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Abstract 
Humans are prone to systematic biases in perception that impact rationality in 

judgement. First impression bias occurs when judgement is overly affected by 

information presented during an initial encounter. Using the amplitude of a specific 

brain response, the mismatch negativity (MMN), our team discovered that the brain 

is prone to this bias effect during the very early stages of sound sequence learning 

preceding knowing awareness. The aim of this thesis was to determine which 

experimental conditions expose or modify first impression bias effects on sound 

pattern learning on multiple timescales. Predictive coding models assume the brain is 

hierarchically-organised and uses perception to make inferences about the sensory 

world whilst updating predictions about incoming sensory information. Recurring 

comparisons between bottom-up input and top-down predictions consider 

environmental noise, and determine the inferential modelling process. MMN, an 

event-related response evoked by violating regularity in a structured sound sequence, 

is an example of a prediction error signal. Its presence informs on prediction model 

content whereas its amplitude informs on model confidence (or precision). 

Prediction error amplitude to a pattern violation is largest when model confidence is 

very high and may require engagement of additional, higher-order resources. First 

impression bias shows that the network uses contextual information at sound 

sequence onset to modulate MMN amplitude to probabilistic changes thereafter. This 

thesis shows that first impression bias is a remarkably robust and long-lasting 

phenomenon that can be interrupted if participants undertake an attention demanding 

task whilst hearing multi-timescale sequences or are provided with accurate 

foreknowledge about sound structures before sequence exposure. This thesis 

discusses how models assuming only local sound probabilistic information drives the 

MMN-generating process cannot explain bias effects on MMN amplitude. Rather, 

the bias is a striking example of a hierarchical inference process incorporating 

attentional resources that considers the potential relevance of sound information and 

its stability over time. 
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Synopsis 
Our team has discovered that the brain is susceptible to first impression bias 

effects during very early processing of information in sound pattern learning across 

time. Evidence of bias shows that the order in which sound information is heard 

markedly changes how pattern learning proceeds, a phenomenon comparable to 

primacy effects observed in psychological studies (e.g. Asch, 1946; Bargh & 

Pietromonaco, 1982; Baumeister, Bratslavsky, Finkenauer, & Vohs, 2001; Devine, 

1989; Hamilton, 1979; Nisbett & Ross, 1980; Perdue & Gurtman, 1990; Pratto & 

Bargh, 1991; Rothbart & Park, 1986; Rozin & Royzman, 2001; Skowronski & 

Carlston, 1992; Wyer, 1973). In this thesis, we1 apply a widely known 

neuroscientific psychophysiological technique, electroencephalography (EEG), and 

use sequences comprising patterns that emerge over multiple timescales to further 

expose under what conditions first impression effects are observed or are modified. 

We use a brain response called the mismatch negativity (MMN), a component of the 

auditory event-related potential (ERP) that is evoked automatically when some 

aspect of the sound environment unexpectedly changes. The MMN is described in 

the literature as a measure informing about neural states underlying central auditory 

processing at the cortical level. More specifically, it can be used to study the brain’s 

capacity to 1) learn transitions statistics underlying sound patterning that emerge in 

environment as time unfolds, and 2) use this information to anticipate the next most 

likely state of neural activation.  

In a series of studies, we have shown that MMN amplitude to transitional 

probabilities over the shorter term is modulated by contextual learning in a way that 

                                                           
1 Whilst I understand it is conventional to use “I” in a thesis, I prefer to use "we" to reflect the joint 
venture I experienced during my candidature. 
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cannot be accounted for by prominent models proposed in the MMN literature. 

Hence, we propose that the brain utilises hierarchically-organised inference 

mechanisms that are sensitive to transition statistics at multiple timescales and 

include sophisticated means for estimating the relevance of one sound event over 

another. Further, we think that the susceptibility of relevance filtering mechanisms to 

first impression bias occurs because estimates based on initial experience of one 

context (in which transition statistics are heard) has undue influence on estimating 

sound relevance based on probabilistic information later. This interpretation is 

consistent with assumptions put forward by predictive coding accounts of learning 

and accordingly, research questions in this thesis are formulated using theoretical 

principals described under this framework. In all experiments, we use variants of a 

sound sequence called the multi-timescale paradigm that contains transition statistics 

that emerge over both the shorter and longer term.  The work described here is 

guided by a focus on specific experimental manipulations that are formulated in 

terms of hypotheses informing on potential mechanisms underlying first impression 

bias effects in auditory relevance filtering.   

 

This thesis is organised as follows: 

Chapter 1: Background and Rationale 

The MMN literature is reviewed and predictive coding theory from which 

research questions in the present thesis are formulated is also described. In the latter 

half, our research findings generated by studying the first-impression bias in early 

relevance filtering under different conditions will be explained; the rationale for 

extending this knowledge in the present thesis will also be put forward.
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Chapter 2-4: Results chapters 

The experimental work including the aims, hypotheses, methods and the 

outcomes for each study are described. In each experiment, variants of the multi-

timescale experimental paradigm are used to test research questions generated about 

first impression bias modulatory effects on MMN amplitude. The specific goals of 

each study were as follows: 

• To replicate patterns of first impression bias effects using a much larger 

sample size relative to those included in previously published studies 

(Chapter 2) 

• To determine the effect of first impression bias on sound pattern learning 

following repeated exposure to more stable or more volatile sound sequences 

(Chapter 2) 

• To determine if learned patterns of first impression bias effects remain if 

participants are engaged in a concurrent task that places high demands on 

attentional and/or working memory resources whilst hearing the multi-

timescale paradigm (Chapter 3)  

• To determine if knowledge about local and context-based sound structures 

before hearing the multi-timescale sequence affects first impression bias 

effects on sound sequence learning (Chapter 4) 

Chapter 5: General Discussion and Conclusions 

A general discussion and the conclusions of this work including contributions 

to the research field and possible directions for future research are provided.
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Chapter 1: Background and Rationale 
 

The environment is made up of an immense number of patterns that unfold with 

time. The way we perceive and learn these patterns is through our senses. In central 

auditory processing, translating sensory experience into something meaningful is not 

straight forward because the highly transient and noisy nature of the sound 

environment makes pattern detection and learning considerably more complex 

compared to other modalities such as touch. It is therefore essential that sound 

information is not only perceived, but is also stored and utilised in a way that allows 

us to interact with the environment in an adaptive way.  

Over time, the brain has developed mechanisms required for learning and 

acting on incoming information about sound pattern probabilities that is, the 

statistical likelihood that an auditory event will happen. There are a number of 

theoretical frameworks for conceptualising this yet one, predictive coding, is based 

on the assumption that the brain models information about sound-induced patterns of 

neural activity and uses this information to form predictions about the likelihood of 

the next sound event (Winkler & Czigler 2012). This allows the brain to filter 

responsiveness to predictable information in preparation for instances where a sound 

event violates an established pattern. When a pattern violation occurs, a prediction 

error is registered and the model updates to accommodate sound change. This is 

considered optimal in terms of efficiency because it allows for the preservation of 

neural energy in responses to predicted sounds that can be re-distributed in 

preparation for any unexpected, and potentially informative, sound events (Friston, 

2003, 2005). Accordingly, new predictions are formed and/or existing predictions 
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are modified to accommodate this new information and perceptual learning 

continues in an automatic and dynamic fashion (Winkler, 2007).   

Active predictions are not always formed and/or updated to be an exact 

replica of current experience even when something in the immediate environment 

has clearly changed. In studies of auditory perceptual learning during very early 

relevance filtering, our lab has shown that the mechanisms driving perceptual 

inference succumb to first-impression bias (Fitzgerald, Provost, & Todd, 2017; 

Frost, Winkler, Provost, & Todd, 2015; Todd, Provost & Cooper, 2011; Todd, 

Provost, Whitson, Cooper, & Heathcote, 2013; Todd, Provost, Whitson, & Mullens, 

2017; Todd et al., 2014a; Todd et al., 2014b; Mullens et al., 2014; Mullens et al., 

2016). Evidence of first impressions shows that what we first learn about sound 

probability in one context distorts learning about probabilities in a different sound 

context later.  

In this thesis, we build upon existing research by further delineating some of 

the key assumptions underpinning first-impression bias in auditory relevance 

filtering for the purposes of developing a framework for understanding experimental 

conditions that facilitate or alter typical bias patterns. The mismatch negativity 

(MMN) is a component of the ERP understood as a prediction error response elicited 

after a sound pattern is violated (Friston, 2005) and is the primary dependent variable 

for each study reported in this thesis. As such, these data extend on our current 

understanding of the MMN as a prediction error signal. In this thesis, the results 

from four studies are presented across three chapters. All observations will be used 

to discuss how each contributes to existing literature on MMN from a theoretical 

standpoint of predictive coding. More broadly, our results provide insight into how 

the neural mechanisms involved in sensory inference and learning operate. Next, a 
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comprehensive review of the empirical and theoretical literature pertaining to the 

research questions addressed in this thesis is provided before evidence of first 

impression bias effects on sequence learning are described. But first, an overview of 

central auditory processing more generally as well as the importance of MMN as a 

tool for measuring sound sequence pattern learning is presented. 

 

1.1. Central auditory processing – a complex sensory phenomenon 

As human beings, we interact with a rich auditory environment that is 

changing with each passing second, minute, day, and so forth. This means that the 

brain is constantly exposed to a vast number of sounds with unique and shared 

characteristics that may (or may not) be important for learning. From a psychological 

perspective, it is generally agreed that the purpose of audition is to learn the source 

of a sound entering the senses because this information is essential for survival (e.g. 

Brunswick, 1956; Gibson, 1962, 1963). Despite many types of sounds occurring 

simultaneously or intermittently, or both, the brain is remarkably proficient at 

recognising sound patterning based on probability and transition statistics, despite 

substantial background noise. This process involves translating the source of each 

individual sound event relative to other sounds and/or noise as well as monitoring 

the ongoing relationship between two or more sounds as time unfolds (Winkler & 

Schröger, 2015). As noted by Helmholtz (1867), the neurophysiological hardware 

underpinning central auditory processing requires elements that can use experience 

for computing the most likely source of sounds including relationships to determine 

the exact cause of incoming sensory input. The sheer complexity of the acoustic 

environment is what distinguishes auditory processing from other sensory modalities 

like smell and touch.  
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The capacity to utilise sound patterning in preparation for impending sound 

change is underpinned by many neural events that support perception, memory, 

attention as well as learning processes (Escera & Malmierca, 2014). Certainly, 

sensitivity to sound patterning is essential for many cognitive functions such as 

directing one’s attention to behaviourally relevant events (e.g. Berti, 2013) as well as 

in infant language development (e.g. Winkler, Denham, & Nelken, 2009). This type 

of processing can be studied using non-invasive EEG scalp recordings of brain 

responses generated by stimulus-relevant ERPs (Kujala, Tervaniemi, & Schröger, 

2007). One key advantage of using ERPs is that each is time-locked to a sound event 

allowing for close examination of the time-course in which information processing 

unfolds with high temporal acuity.  

In the present thesis, we used an ERP approach because we were particularly 

interested in examining the change in electrical activity during early cortical stages 

of temporal information processing in sound sequences containing patterning, at 

different timescales. More specifically, we utilise a well-known waveform derived 

from ERP responses called the MMN (Näätänen, Gaillard, & Mäntysalo, 1978; 

Näätänen, 1992; Näätänen, Kujala, & Winkler, 2011). The MMN can be used to 

infer what has been perceived and learned by the underpinning network over time by 

first establishing a sound pattern and then violating the learned pattern in some way 

(Näätänen et al., 1978). It has been studied in several sensory modalities including 

somatosensory (Kekoni et al., 1997; Shinozaki, Yabe, Sutoh, Hiruma, & Kaneko  

1998; Akatsuka et al., 2005; Akatsuka, Wasaka, Nakata, Kida, & Kakigi, 2007), 

olfactory (Krauel, Schott, Sojka, Pause & Ferstl, 1999) and visual systems  (Czigler, 

Balázs, & Winkler, 2002; Czigler, 2007; Maekawa et al., 2005; Müller, Widmann & 

Schröger, 2013) however most of the literature comprises examination of MMN 
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following a significant change in auditory stimulus sequence (Näätänen, et al., 

1978). Information processing specific to the sound modality is a key focus of this 

thesis.  

 Studies using MMN as a tool for examining auditory processing show that 

the remarkable capacity of the associated network to use stimulus history in 

anticipation of future sound change is a basic brain process. To emphasize this point, 

magnetoencephalography functional imaging techniques show MMN  can be elicited 

in foetuses (Draganova et al., 2005; Draganova, Eswaran, Murphy, Lowery, & 

Preissl, 2007; Huotilainen et al., 2005) and in sleeping newborns (Cheour et al., 

1998; Cheour et al., 2002a, 2002b), during the early stages of sleep (Atienza & 

Cantero, 2001; Nashida et al., 2000; Nittono, Momose & Hori, 2001; Sallinen, 

Kaartinen & Lyytinen, 1994; Sculthorpe, Ouellet & Campbell, 2009), and has even 

been observed in comatose patients (Fischer et al., 1999; Fischer, Morlet & Giard, 

2000; Kane, Curry, Butler & Cummins, 1993; Kane et al., 1996).  

Since its discovery, the auditory MMN has been accepted as a robust marker 

of perceptual integrity and learning that reflects the brain’s capacity to engage in 

comparisons between incoming sound events and some representation of stimulus 

history.  In the proceeding sections, we review the literature outlining the sensitivity 

of the MMN signal to changes in local pattern stability based on simple, abstract and 

more contextual-based cues whilst highlighting how such studies have contributed to 

current understandings of perceptual learning in audition.  

 

1.2 The Auditory Mismatch Negativity (MMN) 

The MMN is a change-specific component of the ERP that is particularly 

useful for examining the brain’s capacity to learn patterning within sound sequences 
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for anticipating the next most likely sound given stimulus history. In its simplest 

form, the MMN is derived using an oddball sequence design - the same paradigm 

used in its discovery (Näätänen et al., 1978; Sams, Paavilainen, Alho, & Näätänen., 

1985). Participants hear a repeating series of identical sounds (called standards) that 

are occasionally interrupted by sufficiently rare sounds (called deviants; p < 0.30) 

that differ in some way from the established pattern. The standard is any highly 

probable sound whereas the deviant is a pattern violation (Winkler, 2007). Another 

way to conceptualise this relationship is that the brain has the capacity to monitor 

patterns (standard-standard) and violations (standard-deviant, deviant-standard) of 

transitional statistics over time (Winkler, Karmos, & Näätänen, 1996; Sussman & 

Winkler, 2001).  

The MMN is elicited 100-250ms after a deviant violates the sound pattern 

and was traditionally calculated by subtracting ERP’s elicited to standards from 

those elicited to deviants2 (Kujala et al., 2007; Sams et al., 1985). In most studies, 

MMN amplitude (µV) is the key dependent variable used to measure sensitivity to 

sound events that violate established patterning and this is true of the present thesis. 

ERP amplitudes are largely sensitive to the physical properties of sound features and 

so ‘genuine’ MMN is typically calculated by subtracting ERP’s to a sound presented 

as standard in one sequence block from ERPs to that same sound when presented in 

the deviant role in another sequence block to control for the impacts of obligatory 

components (e.g. N1, P2; Deacon et al., 2000; Kujala et al., 2007; Walker et al.,  

                                                           
2 Please note, there are a number of additional experimental paradigms used to measure the MMN 
including the many standards (Jacobsen & Schröger, 2001) and cascade designs (Ruhnau, Herrman, & 
Schröger, 2012). The MMN is therefore particularly useful when used as a tool for testing specific 
research questions about mechanisms of the underlying system (see Todd, Harms, Schall, & Michie, 
2013 for a discussion). 
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Figure 1.1. MMN scalp topography and latency. a. ERP responses to standard and deviant tones overlaid on a 
scalp map of 128 EEG electrodes. b. ERPs to the standard and deviant tones at a fronto-central electrode channel. 
C. MMN difference waveforms calculated by subtracting ERP to standards from ERP to deviants. d. MMN 
response averaged over a time window of 100 and 200 ms included to provide a 3D scalp topography map. (from 
Garrido et al., 2007b. Permission to copy and communicate this work has been granted by Marta Garrido, See   
Appendix 8 for evidence of permission) 
 

2001). The maximal MMN peak amplitude (usually <5 μV) is typically measured 

over frontocentral scalp regions and can be distinguished from some other 

components of the ERP (e.g., the N2b) as it often reverses polarity in nose 

referenced mastoid recordings (see Figure 1.1; Garrido, Kilner, Kiebel, Stefan, & 

Friston, 2007; Kujala et al., 2007; Sams et al., 1985).  

Näätänen and Michie (1979) first suggested that MMN comprises two sub- 

components: a sensory-specific component generated in the primary auditory cortex 

and a separate frontal component. Both bilateral supratemporal and right-lateralised 

frontal processes have been identified as cortical sources contributing to MMN 
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generation (Baldeweg, Williams, & Gruzelier, 1999; Giard, Perrin, Pernier, & 

Bouchet, 1990; Rinne, Alho, Ilmoniemi, Virtanen, &Näätänen, 2000). The former is 

associated with relatively automatic processing of sound change whereas the latter is 

thought to contribute to attention-modulated processing of changes across time 

(Chennu et al., 2013; Opitz, Rinne, Mecklinger, Von Cramon, & Schröger, 2002; 

Rinne et al., 2000; Schröger, 1996; Schröger, Marzecová, & SanMiguel, 2015; 

Sussman, 2013; Sussman, Winkler, Huoutilainen, Ritter, & Näätänen 2002). A 

number of studies show that attention can modulate MMN amplitude – an effect 

typically studied using a dichotic listening task where attention is manipulated using 

explicit instruction. In one example, participants heard two alternating sounds of 

differing high frequencies in one ear and two of low frequencies alternating in the 

other ear (Alain & Woods, 1994). Repeating a sound constituted a deviant and 

participants were instructed to attend to one ear only and in a separate condition, 

stimuli were ignored altogether. MMN amplitude to the unattended ear were 

markedly smaller than those in the attended ear with no differences observed for the 

ignore group (Alain & Woods, 1994). Since Näätänen et al.’s (1978) first description 

of MMN however, findings regarding attention modulation of MMN have been 

inconsistent.    

Other MMN studies show that when participants are asked to strongly focus 

attention towards sound sequence features (e.g. a specific sound location or specific 

pitch), its amplitude is markedly reduced (e.g. Alain & Izenberg, 2003; Alain & 

Woods, 1997; Muller-Gass et al., 2005; Winkler, Schröger, & Cowan, 2001; Trejo, 

Ryan-Jones, & Kramer, 1995; Woldorff, Hackley, & Hillyard, 1991; Woldorff, 

Hillyard, Gallen, Hampson, & Bloom, 1998) or not observed at all (Woldorff & 

Hillyard, 1991), relative to passive listening conditions. Another study found that 
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MMN amplitude decreases with increased concurrent auditory task demand (i.e. 

respond to one of three rare tones via button press) suggesting that attention 

modulates MMN if processing resources within the same modality are 

simultaneously allocated to sound sequence processing (Dittmann-Balcar, Tienel, & 

Schall, 1999). Others find no differences in MMN amplitude between attended and 

ignored sounds (Paavilainen, Tiitinen, Alho, & Näätänen, 1993; Sussman, Winkler, 

& Wang, 2003). Thus, attention plays a role in active stimulus processing though the 

degree to which attention modulates MMN amplitude varies depending on the type 

of paradigm used. Importantly, the MMN is elicited irrespective of the participant’s 

focus of attention (Näätänen & Michie, 1979; Näätänen, et al., 1978). In most 

studies, participant focus is typically redirected towards a non-relevant task (e.g. 

watching a film with sub-titles or reading a book) to minimise contribution of 

attention-related ERPs (e.g. N2b; Kujala et al., 2007; Näätänen, Simpson, & 

Loveless, 1982) during pattern learning. This has resulted in a widely-held 

assumption that although attention modulates MMN amplitude, neural generators are 

automatic and operate independently of attention-based mechanisms (Näätännen, 

1992). 

It is generally supposed that the functional significance of the MMN-

generating process is to trigger recruitment of attentional resources for further 

processing of sound changes in the environment that are behaviourally-relevant for 

survival (Escera, Alho, Winkler, & Näätänen, 1998; Escera, Yago, Corral, Corbera, 

& Nuñez, 2003; Näätänen & Michie, 1979). A sound change that sufficiently differs 

from experience (e.g. approaching footsteps that stop suddenly, an air condition hum 

that begins to rattle) will capture our attention prompting conscious perception and 

sometimes, further assessment of whether a stimulus requires a behavioural 
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response. This is consistent with studies showing that changes within an unattended 

sound sequence prompt attention switching away from a primary behavioural task as 

measured by reduced task performance (e.g. Escera et al., 1998; Giard et al., 1990; 

Schröger, 1997; Woods, 1992). Indeed, a component of the ERP linked to switching 

of attention called P3a often proceeds the MMN signal (Alho et al., 1998; Escera, 

Alho, Schröger & Winkler 2000; Escera & Corral, 2007; Friedman, Cycowicz & 

Gaeta, 2001; Knight & Scabini, 1998; Light et al., 2015; Paavilainen, Karlsson, 

Reinikainen & Näätänen, 1989; Rinne, Särkkä, Degerman, Schröger, & Alho 2006). 

Such findings support the hypothesis that the MMN-generating process is involved 

in directing attention, and therefore deeper processing, of the deviant sound 

(Näätänen, 1990). Sound change does not need to be hugely salient for an attention 

shift to occur as even a small variation in stimulus patterning, whether it be locally or 

contextually different stimuli, can attract a person’s attention.  

As will be discussed in subsequent sections, an understanding of exactly 

what the MMN component reflects about the pattern violation process is crucial 

because it can be used to form assumptions about the sound information held in 

memory and further, to infer the potential mechanisms driving perceptual learning in 

central auditory processing. Next, we report on studies showing that the amplitude of 

the MMN waveform is influenced by local changes based on stimulus history before 

describing how processing of changes from one sound to another can also be altered 

by the longer-term context in which sound patterning emerges (Dehaene-Lambertz, 

1997; Näätänen et al., 1997; Sussman, 2007; Todd et al., 2011).  

1.2.1 Pattern violation profiles - local and abstract sound patterns changes. In 

early studies, the oddball paradigm was widely used for establishing conditions in 

which the presentation of a rare sinusoidal tone among a sequence of repeating tones 
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with shared physical characteristic would result in MMN elicitation (Jacobsen & 

Schröger, 2003; Näätänen et al., 1978; Näätänen, Pakarinen, Rinne, & Takegata, 

2004; Schröger, 1998). Changes in the relative probability of sound features at the 

local level is produced when one (or more) aspects of a deviant sound is physically 

different from repeating standards just heard. This means that change in local 

transitional probabilities is highly transient because it occurs rapidly over a 

reasonably short period, usually lasting no more than a few seconds. As a result of 

these early works, the brains capacity to respond to violations of repeating stimuli 

has been observed for several different deviant types including duration (Grimm, 

Widmann, & Schröger, 2004; Jacobsen & Schröger, 2003; Pakarinen, Takegata, 

Rinne, Huotilainen, & Näätänen, 2007; Tervaniemi et al., 1999; Todd et al., 2008), 

frequency (Müller  et al., 2002; Näätänen, Paavilainen, Titinen, Jiang, & Alho, 1993; 

Pakarinen et al., 2007; Todd et al., 2008), spatial location (Deouell, Heller, Malach, 

D'Esposito, & Knight, 2007; Deouell, Parnes, Pickard, & Knight, 2006; Jacobsen & 

Schröger, 2003; Paavilainen et al., 1989; Pakarinen et al., 2007; Schröger  & Wolff, 

1996), intensity (Jacobsen & Schröger, 2003; Pakarinen et al., 2007; Tervaniemi et 

al., 1999; Todd et al., 2008), tone omissions (Nordby, Hammerborg, Roth, & 

Hugdahl, 1994; Raij,  McEvoy, Mäkelä, & Hari 1997; Tervaniemi, Saarinen, 

Paavilainen, Danilova, & Näätänen, 1994b), and phonemic change (Näätänen , 2001; 

Näätänen et al., 1997; Szymanski, Yund, & Woods, 1999; Ylinen, Shestakova, 

Huotilainen, Alku, & Näätänen, 2006). In one study, Näätänen et al. (2004) report on 

a variant oddball design in which one aspect of the standard altered between one of 

five deviant types (spatial location, duration, spatial location, intensity, omission and 

frequency). These data confirmed five MMN response types unique to each 

deviating property and highlights the sensitivity of this component to a range of 
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sound pattern violations based on varying physical characteristics from one sound to 

the next.  The MMN can be recorded even if the sequence does not contain a 

standard sound per se and rather, the invariant properties of the deviant stimuli 

denote a type of standard against which sound change is compared (Pakarinen, 

Huotilainen, & Näätänen, 2010). Irrespective of deviant type, and using a traditional 

computation of deviant minus repeating standard, MMN amplitude also depends on 

the magnitude of difference between a repeating pattern and subsequent violation, 

with a larger discrepancy evoking a larger differential response to the rare deviant 

sound (Sams et al., 1985). 

The sensitivity of MMN to local probability has also been shown using 

roving standard paradigms in which one feature of a standard sound changes 

suddenly (i.e. a pattern violation occurs) and is repeated thereby coming to represent 

the new standard (Baldeweg, Klugman, Gruzelier, & Hirsch, 2004). ERPs evoked to 

a sound that matches the preceding repeating pattern show increased suppression 

with increased presentation of the standards relative to deviants (Baldeweg et al., 

2004; Costa-Faidella, Grimm, Slabu, Díaz‐Santaella, & Escera, 2011; Sams, Hari, 

Rif, & Knuutila, 1993). To emphasize this point, ERPs to a standard sound after 36 

presentations are significantly smaller in amplitude compared to 24 presentations 

(Costa-Faidella et al., 2011). The opposite pattern is observed for deviant sounds that 

is, ERPs are more negative following exposure to 36 versus 24 standard sounds. It is 

therefore widely accepted that elicitation of MMN during exposure to local sound 

probability is dependent on changes in ERP activity to both deviant and standard 

sounds. 

Independent of the ways in which a sound violates an established pattern, the 

key feature is that the violation is considerably less probable (p < 0.30) than the 
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standard stimuli. That is, the rarer the deviation relative to standards, the larger the 

MMN response (Javitt, Grochowski, Shelley & Ritter, 1998; Sams, Alho, & 

Näätänen, 1983; Näätänen, Paavilainen, Alho, Reinikainen, & Sams, 1987). 

Although sound patterning in these instances may be considered relatively simple, 

stimuli involved can be very complex such as those required for language 

processing. For example, phonemes that differ slightly from a repeating sequence 

elicit MMN but only if the deviating phoneme is relevant to a person’s native 

language (Aaltonen, Niemi, Nyrke, & Tuhkanen 1987). The MMN response is also 

elicited following a regularity violation in other temporally and spectrally rich 

stimuli including sequences of music (Van Zuijen, Sussman, Winkler, Näätänen, & 

Tervaniemi, 2004) and rhythm (Vuust et al., 2005). In other instances, standards that 

differ by several characteristics may share only a few similarities such as duration 

and frequency and again, MMN will be elicited if a sound deviates from one of these 

shared features in some way (Gomes, Bernstein, Ritter, Vaughn, & Miller, 1997).  

The MMN has even been shown to be evoked by violations of more abstract 

deviations within sequences, particularly deviations from established sound 

relationships. The relationship between stimuli can come to signify patterning within 

the acoustic environment. This means that a violating sound may not differ from any 

physical feature of the standard sound per se, but rather occurs relative to a 

combination of multiple features defining sound patterning. For example, the MMN 

signal is observed when an established pattern based on the rule, ‘the higher the 

frequency the higher the intensity’, is violated (Paavilainen, Simola, Jaramillo, 

Näätänen, & Winkler, 2001); by a rare repeating sound in a sequence of descending 

tones (Tervaniemi, Maury, & Näätänen, 1994a); as well as by presenting an 

ascending tone pair in a series of descending tone-pairs (Saarinen, Paavilainen, 
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Schöger, Tervaniemi, & Näätänen, 1992). The feature that therefore unites individual 

standard sounds is based on a shared pattern that each conforms to. In another 

example, a sound pattern is characterised by one of three different intensity-

frequency combinations and a violation is produced when a sound comprising an 

intensity feature of one standard type and the intensity of another is heard (Gomes et 

al., 1997; Sussman, Gomes, Nousak, Ritter & Vaughn, 1998; Takegata, Paavilainen, 

Näätänen & Winkler, 1999). In a sequence where the pattern of alternation between 

two frequencies of a brief tone is constant, the occasional repetition of the first 

frequency type will evoke the MMN signal (Alain et al., 1994; Nordby, Roth, & 

Pfefferbaum, 1988). Taken together, there is robust evidence showing that the MMN 

is sensitive to deviations from patterning based on various relationships between 

tones as well as to deviations from the acoustic elements of standard sounds.  

Despite the simplistic nature of oddball-like sound sequences, these findings 

point toward the existence of a well-organised system that can minimise 

responsiveness to sound patterning whilst retaining remarkable sensitivity to even 

the slightest change relative to experience. It is clear that the human brain can store 

and learn information about patterning in transition statistics presented within a few 

milliseconds that is, over considerably short timescales. Remarkably however, 

emerging evidence shows that MMN amplitude is also very sensitive to the wider 

context in which local sound patterning is heard.  

1.2.2 Deviance profiles based on contextual change. The notion of context can 

take on many meanings depending on the experimental manipulation being used. 

Generally however, this term denotes the circumstances that form the wider setting 

in which multiple stimuli are heard across time. Sussman and Steinschneider (2006) 

note that context-dependent stimulus-driven processing describes the differential 
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modulation of neural responsiveness elicited by the same sound presented in across 

differient sound environments. That is, an individual’s perception of a sound can be 

determined by other sounds that are nearby in time (or in space), such that any 

change in the wider context can influence processing of individual sounds and 

transitions as well as associated relationships. Next, we review evidence showing 

that learning about sound patterning emerging over relatively short timescales can 

indeed be modified depending on the temporal context in which sounds are 

presented. 

 It has been discussed in length that exposure to an infrequent oddball sound 

that is presented in a pseudorandom fashion amongst repeating sounds that share one 

or more common features elicits MMN. Remarkably however, the MMN is no 

longer observed if the exact same standard-deviant ratio (i.e. 80:20) is used but 

sounds appear in a fixed temporal order within a sequence (Scherg, Vajsar, & Picton, 

1989; Sussman et al., 1998; Sussman et al., 2002; Sussman & Gumenyuk, 2005). In 

one study for example, no MMN was elicited to a ‘deviant’ sound following 

exposure to a repeating 5-tone pattern (AAAAB where A and B denotes the standard 

and deviant, respectively) suggesting that sound B was no longer coded as a change 

in patterning but rather, had been processed as part of the standard (Sussman et al., 

1998). The key point to emphasise here is that MMN was not dependent on changes 

in local sound probability. Rather, the ERPs coding sound pattern information were 

primarily influenced by the context that in turn, determined how the deviant sound 

was processed. It therefore seems reasonable to assume that the associated network 

utilises contextual information to preserve information about relationships between 

sounds. This means that if MMN is sensitive to contextual features, then the system 
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may also have the capacity to recognise more global structures within a sound 

sequences. 

In line with this assumption, Sussman and Winkler (2001) used an oddball-

like design to show that the MMN response to deviant sounds changed by varying 

the global features within the sequence. Participants heard three segments of sound 

consecutively. Those segments presented first and last contained double deviants 

(i.e. deviant varying on two physical characteristics relative to the standard) only 

whereas the second sound segment was composed of both single and double deviant 

types; the presence of single deviants reflected a change in context relative to the 

double deviant types. Here the MMN to the very same deviant (i.e. the double type) 

was altered depending on the context in which it was presented. A single-peaked 

MMN was elicited to double deviant stimuli in the segments containing double 

deviant types only whereas that to the same stimulus presented in the mixed segment 

elicited a MMN characterised by a double peak (or two MMN’s; Sussman & 

Winkler, 2001). Moreover, it was found that underlying ERP responses to double 

deviants in the mixed segment were not immediately affected by this contextual 

change as the two MMN’s did not emerge until the segment had lapsed for some 

time. These findings indicate that global sound pattern recognition accumulates with 

temporal stability; it also shows that a relatively longer time-course is required 

before the underlying network can make use of contextual-based information when 

processing individual sounds. Finally, it suggests that the mechanism underpinning 

MMN generation maintains a memory of the context for multiple sounds in a 

dynamic manner by updating information about change in a cumulative fashion. 

Taken together, results from these studies indicate that sound patterning emerging in 
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the longer-term plays an important role during relevance filtering of and learning 

about the auditory environment. 

Up until this point, we have discussed that MMN is elicited by deviants from 

patterns learned based on contextually invariant cues well beyond tone feature 

discrimination and relationships between sounds limited to sensory memory 

processes. Integration of more global information in central auditory processing 

supports that notion that the brain is sensitive to context-dependent sound patterning 

and this can modulate learning about local probability. Because MMN amplitude is 

sensitive to contextual cues, it can be used to examine how processing of patterning 

based on multiple stimuli occurring over time is prioritised, stored and utilised by 

associated mechanisms. This means that the emergence of sound patterning and 

associated violations can be fully understood only when the influence of contextual 

features on local sound probability and transitions is also considered. Schröger 

(2007) emphasises this point stating that auditory sensory memory is not a unique 

facet of memory operating in isolation per se. Rather, sensory memory is an 

overarching concept that includes sound representation and integration as well as 

short-term storage of auditory information that represents a connection between very 

short representations and sophisticated cognitive representations stored in the longer 

term. The focus will now shift to a review of the proposed neural mechanisms 

underlying MMN generation and modulation where it will be emphasized that earlier 

theoretical accounts are not fully able to explain the impact of contextual cues 

learned over longer periods on locally-derived pattern learning over the shorter term.  
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1.3 Mechanisms of Mismatch Negativity Generation 

There has been extensive research on the MMN resulting in a number of 

assumptions about the conditions in which this ERP is elicited and its amplitude, 

altered. Even with this progress, we still do not understand precisely how the 

underlying network uses sound patterning recognition to filter sounds based on their 

relative relevance to new learning. The mechanisms that underpin MMN generation 

in perceptual learning remain a contentious issue in the literature. Irrespective of 

theoretical standpoint, it is assumed that the mechanisms depend on the relationship 

between the incoming and previous stimulus rather than on the violating stimulus 

alone.  

Assumptions put forward in earlier conceptualisations have no doubt shaped 

current interpretations of the mechanisms underpinning perceptual learning. 

However, temporal processing constraints of associated MMN generators proposed 

in earlier accounts limits the power of this theory to provide a comprehensive 

account of data showing that longer-ranging contextual cues modulate local 

processing of sounds. We therefore explore this literature through the lens of the 

predictive coding framework because the research questions tested in the present 

thesis were based on observations (to be discussed later), indicating that mechanisms 

of perceptual learning are indeed sensitive to transition statistics emerging over 

multiple timescales. From this position, it is assumed that a hierarchically-organised 

cortical network underpins relevance filtering in perceptual processing allowing the 

system to make inferences about and therefore learn transition statistics emerging at 

fast and considerably slower timescales. Here MMN is conceptualised as a 

prediction error signal that can be used to infer and measure internal states of 

responsiveness and learning rates that vary depending on the temporal stability of 
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sound patterning (Friston, 2005). In the next section, we selectively review early 

accounts of MMN before narrowing the discussion to a more recent model of 

predictive coding that attempts to integrate earlier explanations into one unifying 

theory.  

1.3.1 Early Accounts of MMN. Two early accounts of MMN, namely the model 

adjustment hypothesis (Näätänen, 1984; Näätänen, 1992; Näätänen & Alho, 1997; 

Winkler et al., 1996) and adaptation hypothesis (Jääskeläinen et al., 2004; May et 

al., 1999; May & Tiitinen, 2010) were proposed as frameworks for interpreting 

MMN data that for the most part, have been generated using electrophysiological 

measures. The first emerged from an earlier sensory trace hypothesis and reflects the 

view that the MMN can be explained in terms of a relatively dynamic system that 

involves ‘online’ comparisons between current and preceding stimuli. Adaptation 

explanations propose that ERP responses contributing to the difference waveform do 

not index a distinct MMN response per se but rather, are the result of varying 

stimulation of differentially adapted neurons that evoke earlier obligatory responses. 

In general, differences between this and other theoretical perspectives of the 

mechanisms underpinning MMN generation are distinguished by the inclusion or 

exclusion of a cognitive-based function in addition to much simpler 

neurotransmission processes, respectively. 

The model adjustment hypothesis arose from earlier conceptions of MMN as 

an error detection signal elicited only when the current stimulus differed from some 

transient auditory sensory memory “trace” of the preceding sound input (Näätänen, 

1984; Näätänen, 1992; Näätänen & Alho, 1997; Winkler et al., 1996). Auditory 

sensory memory is a term used for describing the capacity to retain information in an 

accessible state for a relatively short period (approximately 10 s in healthy 
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participants) and is associated with activity in primary sensory brain areas (Bottcher‐

Gandor, & Ullsperger, 1992; Cowan, 1984; Cowan, Winkler, Teder & Näätänen, 

1993; Sams et al., 1993). Here it is proposed that the MMN points towards the 

existence of a memory-based comparison mechanism where the preceding stream of 

standard sounds is stored as a reference for comparing future experience (Alain, 

Woods & Knight, 1998; Näätänen et al.,1987; Näätänen & Winkler, 1999). 

Elicitation triggers the on-line updating of content stored within an internal 

representation of regularity based on the sound source. The MMN is observed only 

when current auditory input does not match information outlined in the active 

regularity representation. These representations reflect content based on the 

individual features of a sound as well as the relationship between sounds. The 

existence of a model stored in memory means that previous experience with stimuli 

can be used to infer future input and that the network can respond accordingly in an 

adaptive way when an incoming event does not conform to stored representations 

(Winkler et al., 1996).   

After learning that the MMN signal can be observed following a “silent 

trace” that is, a period between standard and deviant stimuli in which no sound is 

heard (e.g. Cowan et al., 1993), Winkler et al., (1996) performed a study to further 

elucidate the parameters defining the duration of the proposed memory storage 

capacity. The authors substituted a train of repetitive long (450ms) standards with 

two, four or six new short (150ms) standard sounds before a third (300ms) probe 

sound, differing from both standards, was presented. The SOA was 800ms. It was 

found that whilst MMN elicitation ceased following the third presentation of the new 

relative to old standard, MMN to the probe sound relative to the old standard tone 

was observed even after four presentations of the new standard tone. Further, MMN 
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to the probe sound was elicited after four presentations of the new standard, resulting 

in two successive difference waveforms. In these data, it was shown that MMN can 

be elicited in the absence of a stimulus trace at timescales that exceed those 

associated with auditory sensory memory. The authors concluded that the 

mechanisms driving the MMN processes are not a fixed storage system operating on 

a single representation of trace comparison but instead, is based on interactions 

between many memory representations over a longer time period (Winkler et al., 

1996).   

However, it was later argued that the ERP responses contributing to the 

difference waveform do not index a distinct MMN wave and are the result of varying 

stimulation of differentially adapted neurons that evoke the earlier obligatory N1 

response (i.e. refractoriness; Jääskeläinen et al., 2004). Refractoriness refers to the 

observation that a recently activated neuron reduces responsiveness following 

repeated stimulation (Butler, 1968). For example, it is well-established that N1 

amplitude is highly sensitive to neuronal refractoriness (e.g. Budd, Barry, Gordon, 

Rennie, & Michie, 1998; May et al., 1999), particularly in response to the physical 

properties of deviant versus standard stimuli (e.g. Winkler et al., 1996; Näätänen et 

al., 1997).  In accordance with this view, monitoring of auditory regularities is not a 

requirement for recording a MMN-like waveform per se, but that a change in 

stimulus features would be suffice for its generation due to stimulation of new 

afferent neural assemblies. In a critical review of the literature, May and Tiitinen 

(2010) present an argument for the adaptation hypothesis that is primarily based on 

the finding that the amplitude of the early N1 component decreases with repeated 

exposure to auditory stimulation (e.g. Budd et al., 1998; Rosburg et al., 2006; 

Rosburg, Zimmerer, & Huonker, 2010). According to this hypothesis, subtracting the 
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highly adapted ERP responses to standards from the less adapted responses to rare 

deviants produces a negative displacement approximately 150ms after deviant onset 

with no additional components elicited. Consistent with earlier proposals 

(Jääskeläinen et al., 2004), it was concluded that there is no evidence to support a 

separate MMN response and that the MMN and N1 wave amplitude enlargement are 

terms used to describe equivalent processes that are best understood as a measure of 

a relatively simple mechanism of stimulus specific adaptation (SSA; May & 

Tiitinen, 2010).  

Although the adaptation hypothesis provides an explanation for some of the 

data observed when a rare deviant is presented amongst a train of repeated sounds, it 

cannot account for a number of findings within the MMN literature (see Näätänen, 

Jacobsen, & Winkler, 2005 for critical review of the adaptation hypothesis). Perhaps 

the strongest evidence supporting the separation of MMN from an early N1 

component is the observation that the former is elicited to deviants in the absence of 

the latter (Hughes et al., 2001; Salisbury, 2012; Tervaniemi et al., 1994a; Yabe, 

Tervaniemi, & Reinikainen, 1997; Yabe et al., 1998). For example, it has been 

shown that a MMN-like response is observed following infrequent omission of a 

sound during the presentation of a series of repeating sounds (Bendixen, Schröger & 

Winkler, 2009; Rüsseler, Altenmüller, Nager, Kohlmetz & Münte, 2001; Tervaniemi 

et al., 1994; Yabe et al., 1997). These findings cannot be explained by adaptation as 

the neurons underpinning N1 elicitation cannot be activated in the absence of a 

stimulus. Further, several experimental paradigms in which SSA cannot occur have 

been shown to evoke a distinct MMN wave (Gomes et al., 1997; Paavilainen et al., 

2001; Ruusuvirta, Huotilainen, Fellman, & Näätänen 2003; Saarinen et al., 1992; 

Tervaniemi et al., 1994; Winkler, Reinikainen & Näätänen, 1993). In one earlier 
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study, MMN was observed following presentation of infrequent decrements in sound 

intensity (Näätänen et al., 1989). No stimulus repetition that could cause feature-

specific adaptation is apparent in either of these studies meaning that SSA cannot 

account for these data.  

Given that the auditory N1 and MMN typically overlap in time, it is 

generally accepted that SSA does indeed contribute to the MMN difference 

waveform to some degree (see Costa-Faidella et al., 2011; for review see Ruhnau, 

Herrmann, & Schröger, 2012). As noted by Winkler (2007), many early MMN 

studies did not control for adaption effects, which likely resulted in an over-

estimation of standard/deviant contributions to the MMN waveform. In some of 

these earlier analyses, ERPs to the standard were subtracted from those to the deviant 

and physical differences between sound features were not accounted for in these 

ensuing data. It is acknowledged that this is a potential confound that needs to be 

considered when reviewing earlier studies that utilise the MMN signal as a key 

dependent variable. However, majority of studies since then incorporate an 

experimental control for estimating the contribution of earlier obligatory ERP 

components to the MMN difference waveform (see Kujala et al., 2007 for review). 

As briefly mentioned earlier, isolating the “genuine” MMN from other components 

that may arise is typically calculated by subtracting a sound that is physically 

equivalent, both temporally and sequentially, from the deviant-stimulus ERP. This 

control sound is normally presented in a sequence in which it does not violate a 

sound pattern, so the genuine MMN amplitude is not underestimated.  

To date, the model adjustment and adaptation hypotheses have been largely 

applied to oddball paradigms containing a series of single sound features and/or 

relationships. As discussed however, there is clear evidence showing that 
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mechanisms of MMN are not strictly limited to influences by local sound 

probabilities that can vary from one sound to the next. Certainly, this presents 

limitations for both the adaptation and model adjustment in explaining relevance 

filtering in central auditory processing. In these earlier accounts, standard formation 

was thought to arise purely as a function of sound repetition yet this cannot be 

consolidated with findings showing that MMN is elicited even in the absence of a 

frequently repeating sound. Data generated using complex sound configurations and 

sequences embedded with fixed temporal structures further show that a standard is 

characterised by sounds conforming to some form of patterning irrespective of sound 

change (Winkler, 2007).  

A clear gap in theoretical understanding of the MMN-generating process was 

met with a variant of the ‘memory-mismatch’ explanation (Näätänen, 1990; 

Näätänen et al., 1978; Näätänen &Winkler, 1999) called the regularity-violation 

hypothesis (Winkler, 2007). One difference between this and earlier 

conceptualisations is that mechanisms are proposed to be sensitive to sound 

patterning that operate well beyond temporal processing capacities limited to 

auditory sensory memory. Another key difference is that sensory perception is more 

than just the passive reception of information from the environment. Rather, the 

brain is a predictive organ implicated in continuous information processing ‘on-line’ 

because it utilises past sound exposure to model regularity or patterning in 

anticipation of the most probable future states (Winkler et al., 1996; Winkler, 2007).  

The idea that the brain has the capacity to enter an anticipatory state once 

exposed to highly repetitive sound sequences is not an entirely new concept per se 

(e.g. see Baldeweg, 2006; Deacon, Nousak, Pilotti, Ritter, & Yang, 1998; Näätänen, 

1992). For example, Näätänen, (1992) proposed that neural activity following sound 
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input may act as a frame of reference for comparing incoming sound deviance. This 

idea was however formalised by Winkler and colleagues (Winkler et al., 1996; 

Winkler, 2007). In the present thesis, we use said concepts to formulate hypotheses 

and translate our data in a way that specifically extends upon MMN literature, and 

contributes to more recent literature that applies these principals to inferential 

learning in perception more broadly. In the next section, we introduce each of these 

frameworks in turn. Here we describe how models of regularity representations are 

used for predicting future sound input, ultimately shaping the MMN generation 

process during auditory perception (Winkler, 2007). This will be followed by an 

overview of predictive coding theory, a generalist account of perceptual learning that 

uses the MMN-generating process to validate key assumptions about the 

mechanisms and associated brain network (Friston, 2005).  

1.3.2 Regularity-Violation Interpretation of MMN - The Role of Prediction 

Models. There is robust evidence showing that MMN is sensitive to the wider 

context in which individual sounds are heard. These results cannot fully be explained 

as a memory of local sound probability or differential adaptation of different neurons 

alone. This has prompted reconsideration of theory to better accommodate different 

data patterns generated under different experimental paradigms. As highlighted by 

Winkler (2007), this has led to the re-conceptualisation of a standard from a 

repeating sound to a regular inter-stimulus relationship, as well as a deviant from a 

sound change to a regularity violation. In agreement with this view, repeating a 

frequently occurring sound (e.g. in variants of an oddball sequence design) does not 

come to form a memory trace as such but rather, creates a representation of sound 

regularities used to anticipate the next sound event (Cowan et al., 1993; Winkler, 

1993; Winkler et al., 1996). These regularity representations are called “prediction 
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models” and contain information about individual sound properties and their 

relationships emerging on increasing timescales, respectively. Until the 1990’s, the 

notion of prediction was a relatively new concept within the MMN literature yet was 

quickly recognised as pivotal for testing hypotheses and interpreting results in terms 

of potential mechanisms of the MMN-generation process. Next, we describe the 

proposed role of prediction modelling using concepts outlined in the regulation-

violation interpretation of MMN (Winkler, 2007).  

Winkler (2007) introduced the idea that predictions about both sensory and 

categorical sound information emerging at increasing points in time, respectively, is 

modelled by the brain as part of the MMN deviance detection process. Sensory 

features refer to the physical characteristics of individual sounds whereas categorical 

information is extracted based on the temporal relationship between multiple sounds. 

Models are encoded in memory and reflect information about temporal regularities 

extracted from previous experience with sound input. Stored information is then used 

to generate predictions about the most likely sound event to be encountered in time, 

given the inter-stimulus relationship history (Winkler, 2007). If a sound relationship 

comes to represent a regularity, the temporal information about both stimulus 

characteristics as well as its category is encoded in memory (Winkler, 2007). In an 

earlier discussion, it was proposed that predictions about individual sounds 

characteristics are encoded within the context of their relationships with other sounds 

to minimise storage of redundant information (Winkler & Cowan, 2005). Learning 

about local sound cues and their relationships occurs over relatively short periods 

(e.g.ms-secs) and is therefore assumed to be insensitive to modulation by higher-

order attentional mechanisms (Winkler & Cowan, 2005). 
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Up until this point, the MMN was widely considered to be a low-level 

sensory process, despite evidence that MMN amplitude to dynamic changes on local 

timescales decreases with increased active auditory processing (Dittmann-Balcar et 

al., 1999). A trend towards finding an ‘optimal’ paradigm for studying MMN 

perhaps maintained this assumption to some degree. Indeed, MMN is typically 

studied using paradigms where sound regularities are violated by manipulating the 

physical property of one sound to the next within a relatively short time window in 

the absence of a cognitively demanding concurrent task. Yet, categorising temporal 

relationships between individual sounds involves ongoing, active monitoring and 

therefore requires lengthier processing and maintenance in memory over 

substantially longer timescales relative to local sound change. As pointed out by 

Winkler (2007), this means that stored categorical information may also be 

particularly susceptible to modulation by higher-order brain processes such as 

attention. 

As introduced earlier (pg. 9), one proposed function of MMN is to trigger 

attentional resources for further processing of the deviant sound. However, Winkler 

(2007) took a slightly different approach emphasizing that an integral feature of the 

proposed MMN-generating mechanism is that any prediction modelling of sound 

patterning over time is achieved in a very active manner. If the network is exposed to 

a sound event that violates an established regularity in some way, the MMN 

response is elicited and this triggers the rapid updating of the associated prediction 

model to accommodate new information (Winkler et al., 1996; Winkler, 2007). The 

central function of the MMN response is to therefore direct attention and/or facilitate 

updating of predictions outlined in the current model so to ensure synchrony between 

expected and actual experience with sounds and their relationships. The capacity to 
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quickly integrate new with existing information maximises the likelihood of a match 

between predictions modelled and actual experience before another sound event is 

heard. Certainly, any system (in any sensory modality) that “automatically” and 

rapidly filters out changes is more effective and efficient than leaving it to an active 

(attentional) process. 

Like most inferences, confidence in predictions is used to guide the model 

selection process (Winkler, 2007).  The MMN amplitude can be used to quantify the 

level of model confidence that is, the degree to which model content predicts sound 

input, given experience thus far. Confidence is therefore a term used to explain the 

predictive value or the relative “weight” of one model over another in explaining the 

current and/or future sensory events (Winkler, 2007). Predictive confidence 

increases each time a model accurately accounts for the sound experience. In the lab 

for example, successive presentation of several standard sounds (i.e. local 

reinforcement) increases the accuracy and reliability of the associated prediction 

model. MMN amplitude here will be considerably large if an unexpected sound 

violates the established regularity because high confidence in the underlying model 

means associated predictions are weighted above other predictions modelled that 

potentially inform on environmental statistics, albeit with less reliability (Winkler, 

2007). Accordingly, stimuli that consistently violate predictions about regularity will 

lead to reduced (or no) confidence in the active model as indexed by a comparatively 

smaller MMN error response with each presentation. Hence, the presence of MMN 

can be used to infer which regularity has been encoded in the prediction model and 

its amplitude informs on confidence in the model’s capacity to successfully predict 

future experience. 
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Winkler’s (2007) regularity-violation hypothesis of MMN has been put 

forward as a variant of the earlier memory trace interpretation (Näätänen, 1990, 

1992) to explain results observed in substantially more complex sound sequence 

paradigms. These accounts are similar in that both assume the MMN-generation 

process is triggered when a mismatch between a sound and some stored neural 

representation of earlier repeating sound stimulation occurs. Winkler (2007) neatly 

summarises how the regularity-violation interpretation extends on Näätänen’s (1990, 

1992) account in several ways. First, the brain can encode more abstract, contextual 

inter-stimulus relationships in addition to local sound information emerging on 

longer and shorter timescales, respectively. Local sound characteristics are encoded 

within the context of sound relationships. Second, a standard is defined as any form 

of regularity, irrespective of sound change, and not only by a repeating sound 

pattern. Here deviance occurs when a sound violates this regularity. Third, MMN is 

elicited if predictions about when a sound regularity should emerge misalign with the 

actual timing of incoming sound information and therefore considers both past and 

future states, and not just the deviant-stimulus trace alone. Finally, early accounts 

advocate MMN amplitude as fundamental to attention-switching toward sound 

change. From a prediction modelling perspective, however, MMN amplitude is a 

measure of predictive confidence that can be used to infer the active model of 

regularity and its associated predictive strength. Winkler (2007) therefore explains 

how the concept of prediction applies to MMN results thus far by emphasizing that 

sound information processing is future-focused.  

The introduction of predictive-based accounts in the MMN literature 

emerged alongside a more generic account called predictive coding that is used for 

understanding mechanisms of inference in sensory perception and learning. 
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Predictive coding provides a compelling account of phenomena observed in 

psychology (Knill & Pouget, 2004) as well as in electrophysiology (Rao & Ballard, 

1999) and neuroanatomy (Friston, 2003, 2005). It is therefore not an explanation 

specific to MMN but rather, is a general model that considers both the predictable 

and uncertain nature of the world in its computations for perception (& action). 

Proponents of this view make discrete claims about how the underlying brain 

network implements prediction models along a structural-temporal gradient to 

determine the sensory cause of sound input (Friston, 2003, 2005; Friston, Kilner, & 

Harrison, 2006). We now provide an overview of concepts implied by predictive 

coding, and how these relate to MMN, because they are not directly covered in the 

MMN literature and further, were a source of motivation for testing hypotheses in 

the original body of work for which this thesis extends upon.     

1.3.3 The Predictive Coding Theory. The aim of this section is to unpack general 

principles of contemporary hierarchical predictive coding theory - a generic 

framework that can be used to predict, explain and understand mechanisms 

underpinning inference processes in perceptual learning. The MMN offers but one 

indirect line of evidence fitting this approach and is arguably the most widely studied 

neural marker of prediction error signalling processes of inferential learning. Here 

we explain predictive coding concepts more broadly before translating the auditory 

MMN as a measure of temporal processing from this perspective. For clarity, we 

make note of theoretical concepts common to both MMN and predictive coding 

literature that for the most part differ only by terminology. It is also noted that there 

is a large literature on Bayesian mathematical applications and interpretations of 

predictive coding that is beyond the scope of this review as it is not pertinent to 

experimental and statistical methods used in this thesis (see Friston, 2003, 2005; 
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Friston & Kiebel, 2009). Rather, we focus on concepts pertaining to 1) the 

hierarchical and functional organisation of the brain, 2) the mechanism of perceptual 

inference, and 3) the role of attention that together, operate dynamically to enable 

prediction modelling on multiple timescales during sound learning. This section will 

be followed by a discussion on the MMN from the perspective of predictive coding 

but first, a brief history relevant to the emergence of modern-day predictive coding 

perspective is provided. 

In a broad sense, the notion of sensory perception and learning operating in a 

predictive way is not a novel idea per se. Gregory (1980) stated that these processes 

can be equated with hypothesis-testing where the brain continuously samples sense 

data from the environment that will ultimately support the null (i.e. the most highly 

probable sound heard thus far will be heard next) or alternative hypothesis (i.e. an 

improbable sound is heard). Much earlier, Helmholtz (1867) had discussed the 

theory of unconscious inference that is, the brains capacity to use heuristic 

computational processes influenced by perception, attention, learning and behaviour 

to infer the cause of sensory stimulation. Predictive coding theory follows this 

empiricist tradition. 

Elements of predictive coding theory as it stands today began emerging in the 

1990’s when Helmholtz’s (1867) theory was integrated with Bayesian methods for 

studying perception (Kersten, Mamassian, & Yuill, 2004; Knill & Pouget, 2004; Lee 

& Mumford, 2003; Mumford, 1992; Rao & Ballard, 1999). The fundamental concept 

of the Bayesian approach is that the brain uses incoming sense data to code 

probability distributions in neural populations, given prior knowledge, whilst 

considering the relative uncertainty of each sensory cue (Knill & Pouget, 2004). In 

the most standard version of predictive coding, the network’s underpinning 
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perceptual learning reflects a hierarchically-organised cluster of models with 

increasing abstraction over temporal (& spatial) scales, respectively; higher level 

models carry predictions and can influence activity in lower levels implicated in 

prediction error signalling (Friston, 2003, 2005; Rao & Ballard, 1999). Such 

organisation minimises redundancy or “surprise” generated when predictions do not 

fully explain actual sensory input allowing for full use of a resource-limited brain 

network. Modern-day predictive coding theory aims to provide an up-to-date and 

unified theory of brain structure-function relationships from a probabilistic 

perspective.  

Predictive coding asserts that cortical hierarchies are the structural 

architecture required for processing sound probability and their relationships, 

including the wider context in which these arise. This is in line with several studies 

showing the brain is organised hierarchically (Felleman & Van Essen, 1991; 

Hochstein & Ahissar, 2002; Mesulam, 1998; Rao & Ballard, 1999; Zeki & Shipp, 

1988). One important feature of this network is that neurons at one level integrate 

information coded by neurons at the level below and vice versa, consistent with 

evidence showing the brain is reciprocally connected (Felleman & Van Essen, 1991; 

Zeki & Shipp, 1988). This is generally referred to as “backwards” and “forwards” 

connections, respectively. Forward connections operate from lower to higher areas 

and function to isolate and disseminate information about sound probabilities and 

their transitions, that is the relationship between one sound event to the next, in a 

feed-forward fashion (Friston, 2003). Backwards connections run from higher to 

lower brain areas and are implicated in monitoring and encoding the wider context in 

probabilistic information unfolds (Friston, 2003). Lateral connections also play a key 

role in communicating information by connecting areas within a given hierarchical 
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level (Friston, 2003). Central auditory processing therefore depends on mutual neural 

activity within and between brain areas that together, reflect a hierarchy of 

‘generative models’ of increasingly abstract states (Friston, 2003, 2005).  

Not only does predictive coding explain many facets of brain organisation, it 

also provides a functional account for understanding a range of neural responses 

implicated in efficient extrapolation and coding of statistics from the auditory 

environment. Such sophisticated organisation allows the nervous system to reduce 

entropy or “surprise” by optimising the limited dynamic range of neurons (Friston, 

2003, 2005; Friston & Kiebel, 2009). This is known as free energy optimisation. The 

free energy principle can demonstrate how the brain utilises inferential processes in 

statistical learning to maximise model evidence and make full use of a resource-

limited system. Higher and lower-order resources are distributed as per the relevance 

of the incoming information, given a ‘prior’ to optimise neural expenditure (Friston, 

2003, 2005). A prior is a type of generative model3 that reflects a probability 

distribution of possible sound sources given experience as well as some measure of 

uncertainty. Abstract information stored at higher levels informs and potentially 

predicts neural activity at a level below by imposing a prior (i.e. guesstimate) of their 

responsiveness. Functional asymmetry therefore exists between forwards (conveying 

predictions errors) and backwards connections (conveying predictions; Friston, 

2003). Any discrepancy between predictions and actual activity evokes a prediction 

error signal that is communicated to the level directly above. Error signalling is then 

used to generate a new and improved prediction model (i.e. Bayes posterior 

probability distribution; Vapnik & Vapnik, 1998). This has been referred to as an 

                                                           
3 Friston’s (2003) generative model or prior coincides with Winkler’s (2007) notion of prediction 
model. 
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information ‘feedback loop’ (e.g. Garrido et al., 2007). Any difference between a 

prior and sound input can therefore induce a cascade of ascending prediction errors 

that are modulated only when the most likely explanation of the sound source is 

attained (i.e. neural energy is optimised), and the sound is perceived (Friston, 2003).  

In predictive coding, attention is involved in optimising sensory inference 

and is framed as a process that deduces the level of uncertainty of sound inputs 

(Feldman & Friston, 2010; Friston, 2009; Rao, 2005; Spratling, 2008). In actuality, 

the entire auditory evoked potential is a prediction-error signal meaning that even 

early obligatory components are prone to top-down attentional modulatory processes 

(Friston, 2003). Attention is used to weight or rank sensory signals by estimating 

their precision (i.e. inverse variance in Bayesian terms4; Feldman & Friston, 2010; 

Friston, 2005). Much like Winkler’s (2007) concept of model confidence, precision 

can be likened to an index of error signal reliability. This means that the brain 

produces prediction models that are sensitive to both error signal content and an 

estimate of its reliability as a meaningful marker of a prediction violation. When 

precision estimates are low, the prediction error signal is down-weighted and may be 

overlooked altogether. Accordingly, error signalling is magnified and prioritised for 

further processing when precision is high. Attention and predictive mechanisms 

interact in a highly dynamic way that together, reflect a relevance filtering system 

where processing of certain sound input is prioritised over others if it is estimated to 

be a very reliable explanation of sound experience. 

This inference-driven, sound relevance filtering system is sensitive to 

temporal patterns unfolding on multiple timescales (Kiebel, Daunizeau & Friston, 

                                                           
4 Inverse variance assumes inferences are formed in a backwards manner (e.g. from observations to 
parameters, or from effects to causes) conferring a necessary role for backward connections in neural 
circuits (Friston, 2003). 
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2008). As introduced above, temporal patterns in the sound environment are defined 

by the likelihood that one sound event will reliably follow another sound event in 

time (i.e. a transition statistic). Kiebel et al.’s (2008) influential work proposes that 

the large-scale hierarchical organisation of brain structures parallels a hierarchy of 

timescales where slower changes in the sound environment are the context for sound 

change over shorter periods. Lower levels encode transition statistics emerging 

dynamically on local timescales (i.e. < 1 s) whereas higher levels monitor more 

contextual changes that occur over longer periods of time (i.e. seconds, tens of 

minutes or even longer; Kiebel et al., 2008). Prediction errors can be elicited at 

various processing stages operating on this rostral-caudal gradient. Importantly, 

predictions generated over longer periods of time can dampen responsiveness in 

more primitive brain areas if a rare sound violates predictions modelled over a 

comparatively shorter timescale (Kiebel et al., 2008). The brain does this by 

suppressing (i.e. prediction-driven) or amplifying post-synaptic gain of stimulus-

driven neural activity attuned to different acoustic elements (e.g. physical 

characteristics, spatial/temporal context; Bastos et al., 2010; Brown & Friston, 2012; 

Feldman & Friston, 2010; Kiebel et al., 2008), even when participant focus is re-

directed away from sounds (Schröger et al., 2015). To summarise, the brain learns on 

multiple timescales by coding environmental statistics into neural states to generate 

predictions used for informing its operations in preparation for future neural states – 

a function well-suited for computing with uncertainties (Friston, 2003). 

To briefly summarise the discussion thus far, predictive coding proposes that 

perception arises by integrating sound input with predictions modelled on multiple 

timescales that in turn, are used to infer sound causation based on information about 

sound transition statistics accumulated thus far. Importantly, this theory has a 
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number of core principles that motivated the experimental designs in this thesis. We 

shall now describe how predictive coding as a general framework that can unify 

earlier hypotheses described in the MMN literature (see former sections) and 

ultimately, to understand the mechanisms behind MMN generation and its role in 

inferential sound learning processes. 

1.3.4 The MMN from the Perspective of Predictive Coding Theory. Apart from 

the adaptation hypothesis (Jääskeläinen et al., 2004), earlier accounts contend that 

the MMN is observed when a mismatch between predicted and actual sound 

experience occurs and is used to update the associated model in preparation for 

future experience (Näätänen & Winkler, 1999; Winkler, 2007). This resonates with 

predictive coding theory, where previous experience with sound (probability) is used 

to predict future experience (Friston, 2003). Error signalling processes arise when 

predictions fail to explain the current sensory experience. From this standpoint, the 

MMN is framed as a classic prediction error signal observed when a sound violates 

an anticipated sound transition statistic predicted by an internal model of regularities 

extrapolated from the auditory environment (Kiebel et al., 2008; Rao & Ballard, 

1999).  

Studies using the MMN to demonstrate the validity of predictive coding 

show an underlying modulation of feedforward and feedback connectivity that 

prompt the distribution of prediction error signals and predictions, respectively 

(Garrido et al., 2007, 2008, Garrido, Kilner, Stephan, & Friston, 2009; Wacongne, 

Changeux, & Dehaene, 2012). Perhaps the strongest evidence for backward 

modulation following an auditory pattern violation comes from studies showing 

reduced MMN amplitude in patients with dorsolateral prefrontal cortex lesions 

(Alho, Woods, Algazi, Knight, & Näätänen, 1994; Alain et al., 1998; Knight, 1984). 
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Other results suggest that both anterior and superior temporal structures contribute to 

initial pattern violation processing (Giard et al., 1990; Halgren, Sherfey, Irimia, 

Dale, & Marinkovic, 2011; Hari et al., 1984; Jääskeläinen et al., 2004). After this 

point, differential activity becomes increasingly localised to the frontal lobe and may 

include attention-based resources (Baudena, Halgren, Heit, & Clarke, 1995; Halgren 

et al., 2011). This is consistent with studies showing that superior temporal 

generators interact with the prefrontal cortex (PFC) in considering sequence context 

during auditory pattern processing (see Zatorre 2001 for review). These data are 

compatible with predictive coding because they show that brain structures and their 

corresponding function are hierarchically organised to allow error signalling to 

inform on prediction model updating during sound relevance filtering.  

MMN relevance filtering during sound sequence learning requires highly 

sophisticated and dynamic predictive processes that incorporate (but are not limited 

to) simple SSA processes. In one instance, Garrido et al., (2008) tested the feasibility 

of the adaptation versus model-adjustment hypothesis as well as a hypothesis that 

combined the two, the latter reflecting a unified predictive coding explanation of the 

neural network underlying MMN generation. These data showed that the 

mechanisms of MMN generation involve communication by way of neuroplasticity 

between brain areas spanning a hierarchy of increasing complexity as well as local 

SSA within the primary auditory cortex. It is therefore unlikely that mechanisms 

underpinning the MMN network are based solely on synaptic connectivity within or 

between brain areas but rather involves both processes operating simultaneously 

within a neural hierarchy consistent with predictive coding assumptions (Garrido et 

al., 2008). The authors concluded that predictive coding embodies both the model-

adjustment and adaptation hypothesis because it predicts that updating of a 
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generative model of sound regularity encompasses dynamic changes in synaptic 

activity proposed in each earlier account, respectively. In this regard, the MMN 

updates the weighting of model predictions if the model fails to explain bottom-up 

input and thus fails to suppress an error signal (Garrido et al., 2009).  

The degree to which prediction model updating occurs can be measured 

electro-physiologically using MMN amplitude. The disappearance, or suppression, 

of MMN is observed if the network learns that transition statistics underlying sound 

regularity are not likely to change over the longer term (Baldeweg, 2006, 2007; 

Friston, 2005; Kiebel et al., 2008). For example, the simple oddball sequence is a 

highly stable environment because the temporal element of the repeating standard 

sound remains constant across the entire experimental session. Model precision, or 

predictive confidence (Winkler, 2007), continues to build the longer the stable-

standard period remains constant (Kiebel et al., 2008). The higher the precision, the 

larger the MMN amplitude to deviations and this is equated with engagement of 

cognitive resources to update the weighting of model predictions in line with actual 

experience (Friston, 2003, 2005; Garrido et al., 2008; Kiebel et al., 2008).  

Accordingly, a comparatively smaller MMN amplitude following a deviant is 

observed if it is less clear whether transition statistics underlying sound regularity 

will change over time (Friston, 2003; Kiebel et al., 2008). For instance, the roving 

paradigm is a relatively unstable sound environment because aspects of the repeating 

standard are constantly changing within a shorter timescale (typically <20 s). Under 

these conditions, model updating (i.e. higher-order resource allocation) proceeds in a 

cautious manner because the network cannot build a very reliable prediction model 

in the absence of sound pattern stability over the longer-term. A prediction model 

with less precision results in smaller MMN following an unpredicted sound as more 
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evidence is needed to determine whether the deviant is a truly meaningful sound 

event (Friston, 2003). Model updating here is probably not the most efficient use of 

neural expenditure in what is a resource-intensive process (Friston, 2003). 

Precision updating of internal models, reflected in MMN amplitude, is 

therefore influenced by sound learning over longer timescales and can be likened to 

a contextual-based, higher-order form of learning. By this account, MMN amplitude 

should always been larger when transition statistics underlying regularity are stable 

relative to unstable over time. Sound learning over longer timescales requires careful 

consideration of whether MMN elicited by sound fluctuations on short timescales 

warrants model updating given the wider context under which longer timescale 

information unfolds. Notably, the crux of this thesis emerges from data showing that 

model updating on multiple timescales is constrained by predictions formed during 

the very first encounter with sound probabilities.  

We now narrow our focus to a series of studies that together, hold 

considerable implications for the field of MMN research and inferential learning 

more broadly. The most important outcome of this research is the discovery of 

primacy bias, of which we also refer to as first impression bias, on MMN amplitude 

during the very early stages of auditory information processing. First, we introduce 

the notion of ‘first impression’ as understood in popular culture before presenting a 

timeline of the scientific experiments contributing to the evidence-base of first-

impression bias effects that together reflect the groundwork for which this thesis 

extends upon. To conclude, we propose that these data are a striking example of a 

hierarchical inference processes in which the brain uses probabilistic information on 

multiple timescales to weight the potential relevance of future sounds events. 

 
1.4 First Impressions Matter   
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First impression bias is a term used to describe a limitation of information 

processing in which people believe the first piece of information they are exposed to 

and are biased in evaluating subsequent information in the direction of the initial 

influence (Lim, Benbasat, & Ward, 2000). It is well-cited in the social and 

personality psychology literature where it has been shown that the very first 

encounter with another person, whether it be directly (e.g. upon first meeting) or 

indirectly (e.g. exposure to prior information about person before a first meeting), 

can have a long-lasting impact on our beliefs even when evidence to the contrary is 

presented (Allport, 1979; Anderson, 1965; Asch, 1946; Baumeister et al., 2001; 

Hamilton, Katz, & Leirer, 1980). To our knowledge, the revelation that first 

impressions can also have long-lasting bias effects on sequence learning during the 

very early stages of auditory information processing is a novel finding.  

The discovery of first impression bias, by Todd et al. (2011) has resulted in a 

series of studies all with the shared aim of manipulating key aspects of the original 

experimental design to establish the conditions under which the influence of first 

impressions on sound sequence learning is modified. In the next section, we describe 

the original experiment in which first impression bias was revealed using the MMN 

before reporting on follow-up studies examining the bias prior to the commencement 

of this thesis. In respecting the author’s original terminology, we will use the term 

primacy bias when reviewing early studies contributing to this body of work. As it 

stands today however, primacy bias and first impression are used interchangeably in 

our published studies and denote the same phenomenon. Assumptions about how the 

mechanisms underpinning this unexpected phenomenon may be operating will also 

be discussed. Finally, we use these findings as a platform for putting forward the 

rationale that the studies presented in this thesis contribute to ongoing effort to 
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elucidate how mechanisms underpinning first impression bias in perceptual learning 

are operating during sound sequence learning. But first, we briefly recap key points 

highlight in the preceding literature review that together formed the rationale for 

Todd et al.’s first study in 2011.   

1.4.1 A Primacy Bias is Discovered. We have established that the auditory system 

automatically extrapolates probability information about sounds and their 

relationships emerging on multiple timescales in the environment. The brain learns 

that highly repetitive sounds events are the most likely cause of stimulation of the 

auditory system. The brain suppresses responsiveness to predictable sounds that 

provide no new information and uses this change in activity to predict future sound 

experience (Friston, 2005; Winkler et al., 1996). Accordingly, the auditory system 

becomes sensitised to sounds that violate predictions and sound deviations elicit the 

MMN prediction error signal. Responsiveness to deviations over the shorter term 

may be constrained by confidence in predictions modelled over the longer-term 

(Friston, 2003; Kiebel et al., 2008). Taken together, this means that predictive 

confidence for a given model (i.e. precision; Friston, 2003), as indexed by MMN 

amplitude, should always been larger when transition statistics underlying sound 

regularity are stable relative to unstable (Kiebel et al., 2008). In 2011, Todd et al. 

designed an original study to specifically explore whether this is indeed the case.   

Todd et al.’s (2011) design incorporated a unique sound sequence with 

varying sound configurations called the multi-timescale paradigm. As presented in 

Figure 1.2, the multi-timescale sequence consists of two tones in which a short 

(50ms) and a long (100ms) sound that differ by duration switch roles as a highly 

probable standard (p = 0.875) and rare deviant (p = 0.125), creating two block-

context types. In one block-context type, the short sound is the standard (hereafter  
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Figure 1.2. Diagram illustrating the original multi-timescale design. Three (slow, medium, fast) sequence 
conditions that differ only by the length of time the standard remains stable before tone roles switch. The 
diagonal lined rectangles represent the first block-context type (50ms standard, 100ms deviant) and the greyed 
rectangles, the alternate block-context type where tone roles are switched. (From Todd et al., 2011) 

 

referred to as first standard) and the longer sound plays the role of deviant (hereafter 

termed first deviant). In the alternate block-context type, these tone roles switch such 

that the first deviant sound becomes the standard (i.e. second standard) and therefore 

forms the basis for sound patterning and the initial standard becomes deviant (i.e. 

second deviant). The notion of tone role probabilities is essentially a reframe of the 

notion of transition statistics and are terms that will be used interchangeably from 

now on.  

To highlight this point with an example, the standard transition statistic in the 

first block-context is represented by a 50ms likely following a 50ms sound whereas 

the deviant is denoted by a 100ms sound rarely following a 50ms sound. Deviant 

sounds appeared pseudo-randomly across each block-context type and were always 

separated by standards. ERP responses to the first five standards at the start of each 

block-context and the first standard immediately following the presentation of a 

deviant were removed from analyses. Approximately half (n = 10) of participants 

heard the block-context with the short sound as the first standard first whereas the 
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remainder (n = 9) heard the block-context with the longer standard sound first. To 

explore how confidence in model predictions accumulates over time, the length of 

time that the standard sound remained constant was also manipulated across three 

different conditions.  

As shown in Figure 1.2, tone roles switched every 480 tones such that the 

standard remained stable for 2.4min in the slow condition. In the medium condition, 

the switch occurred every 320 sounds and the stable-standard period lasted 1.6min. 

In the fast condition, the switch occurred every 160 tones and the standard was stable 

for 0.8min. A control condition equivalent to a classic simple oddball paradigm as 

well as a fast-changing sequence with 2s gaps between block-context were also 

included in Todd et al.’s (2011) design. The former was used to ensure MMN could 

be elicited for a given participant and the latter was used to determine whether a 

brief silent period would impact on MMN amplitude; inserting a silent gap had no 

effect and so were omitted from further analyses.  Irrespective of condition, 1920 

sounds were heard in total and were presented with a 300ms stimulus onset 

asynchrony (SOA). Local within-block probabilities as well as sequence duration 

were equivalent across conditions which were presented with counterbalancing. A 

short 2-5min break between conditions was included. All participants were 

instructed to ignore the sounds being played and watch a subtitled film. It was 

expected that MMN amplitude to deviants would differ by standard-stable history; 

that is, the largest MMN was expected to emerge when the standard remained stable 

for the longest period (Todd et al., 2011). Accordingly, MMN was expected to be 

smaller with more rapid tone role switches. Here it was assumed that increasing the 

temporal stability of the standard increases predictive confidence in the active model 



CHAPTER 1: BACKGROUND AND RATIONALE 

44 
 

and this would be reflected in larger MMN following a prediction-violating deviant 

sound (Kiebel et al., 2008).  

Unexpectedly, the impact of standard stability on MMN amplitude depended 

on the order in which tone roles were heard. MMN was indeed larger the longer the 

standard sound remained stable but only for the first deviant tone presented in block-

contexts that conformed to how the sequence started (see Figure 1.3; Todd et al., 

2011). When tone roles switched, no significant difference in MMN size was 

observed between conditions. The authors also report on standard and deviant 

analyses showing that the differential effect of sequence stability on tone role order 

was predominantly driven by ERP responses to the deviants (see Figure 1.4). Todd et 

al., (2011) reasoned that the probabilistic information about each tone at sequence 

onset modulated the impact of temporal stability on MMN amplitude thereafter 

despite both tones being presented with equal probability across stable and unstable 

contexts.  

The authors had discovered what they refer to as a ‘primacy-effect’ in very 

early relevance filtering. Learning about transition statistics in the block-context 

presented at the very start of the sequences was proposed to somehow impact on 

subsequent sound sequence learning (Todd et al., 2011). It is important to note that 

significant MMN was elicited to both sounds when presented as rare deviations. The 

brain therefore learned that the former first deviant sound had come to be the sound 

regularity (second standard) in the switched block-context. However, predictive 

confidence in the underlying model of regularity accumulated differently for the first 

relative to second deviant. The second deviant was not modulated by standard- 

stimulus history as one would expect based on widely held assumptions that 
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Figure 1.3. Mean MMN amplitude to each deviant tone for each condition separated by order in which tone roles 
were heard. The top panel A emphasises the change in MMN amplitude as a function of condition (increasing 
standard stability history) for each deviant tone with the group who were presented with the 50 ms standard first 
plotted separately to the group who received the 100 ms standard first. The bottom panel B emphasises the tone 
role order effects on MMN amplitude to the two deviant tone types for each condition (Todd et al., 2011). 
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Figure 1.4. MMN waveforms to each tone and ERPs to tones when heard as deviant or standard for each 
condition separated by order in which tone roles were heard (Todd et al., 2011).  
 
 
 
predictive confidence, and thus MMN amplitude, should be larger with increased 

temporal stability of the standard (Kiebel et al., 2008). 

Evidence of a primacy bias also challenged the empirical data pertaining to 

the MMN literature indicating that its amplitude faithfully reflects local sound 

probabilities emerging on short (i.e. <30s; Baldeweg et al., 2004; Costa-Faidella et 

al., 2011; Sams et al., 1983) or even multiple timescales (Ulanovsky, Las, Farkas, & 

Nelken, 2003). If MMN were only sensitive to the local probability across either 

block-context, then its amplitude should not differ by how often the contexts switch 

(minimum of 0.8 min). Todd et al.’s (2011) data therefore implies a long-acting, 

order-driven limitation on how initial experience with sound probabilities impacts 

perceptual inference thereafter. Yet, one stand-out finding prompted the authors to 

exert caution when making claims about the emergence of a primacy-like effect; 

standard and deviant ERPs were more positive in those who received the 100 ms 
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standard first. The sample sizes (n = 9-10) used in the study were recognised as 

problematic in explaining these group differences because smaller samples are prone 

to individual differences relative to examining trends across a larger data set. In a 

follow-up study, the authors pursued a within-subjects design to explore the 

longevity of the primacy bias and directly address whether the physical differences 

between tones could indeed explain differences in the pattern of results between 

groups. 

In a subsequent within-subjects study, a refined and expanded version of the multi-

timescale paradigm was used to test whether primacy bias was a replicable finding 

and further establish the impact of initial tone roles on sequence learning (Todd et 

al., 2013). Only the slow and fast sequence types were retained in this study; here 

30ms and 60ms tones alternated standard-deviant roles. Standard (p = 0.875) and 

deviant (p = 0.125) probabilities stayed the same and as before; local within block 

probability and overall tone probability remained fixed (Todd et al., 2011). All 

participants heard slow then fast sequence pairs in a fixed order (called Order 1; see 

Figure 1.5; Todd et al., 2013). This allowed the authors to test whether Todd et al.’s 

(2011) findings could be repeated. After 5 min, a sequence pair in which the order of 

tone probabilities (i.e. block-contexts) were reversed followed Order 1 (i.e. Order 2). 

This allowed the authors to see whether primacy effects are affected by differences 

in the physical characteristics between tones. Five minutes after hearing Order 2, 

Order 1 was again heard (termed Order 3) to determine whether the bias is always 

observed when the initial sequence structure is presented.  

As shown in Figure 1.6, it was found that MMN to the first deviant was 

larger in stable relative to unstable sequences for Order 1 with no differential impact 

of stability for the second deviant tone. This finding was replicated in Order 2 
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Figure 1.5. Three-order multi-timescale sequence variant. For each Order type, lined blocks indicate a 30ms 
standard and 60ms deviant, whereas tone roles reverse in shaded blocks. (From Todd et al., 2013) 

 

 

Figure 1.6.  Mean MMN amplitude for three-order multi-timescale variant. MMN to 30ms and 60ms deviant 
sounds as a function of speed in which tone roles switch and block-context order. Interaction effects on MMN 
size between speed effects and tone type across each Order type. Error bars = Morey’s (2008) corrected 
normalized within-subject standard errors (from Todd et al., 2013. 
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confirming that evidence of a primacy bias cannot be explained by tone 

characteristics, and rather the impact of role stability on MMN amplitude is a 

function of the initial roles associated with each tone at sequence onset (Todd et al., 

2013). Remarkably, primacy bias completely disappeared upon presentation when 

Order 1 was repeated after the second Order type. A reliable MMN index of primacy 

bias anchored to the initial structure of a sound sequence was established and could 

be abolished when neither block-context was exclusively associated with a first 

impression. Perhaps the strongest support for this phenomenon derives from a study 

showing that bias is most prominent at the start of block-contexts immediately after 

tone roles switch (Todd et al., 2014a). 

Todd et al., (2014a) set out to examine how predictive confidence 

accumulates over time within block-contexts of the multi-timescale sequence. This 

was based on the rationale that equal MMN amplitudes to the second deviant 

irrespective of sequence stability means that prediction model confidence is 

maximised within 0.8min (the faster sequence block-context length). In the 

experimental design, only Order 1 from Todd et al., (2013) was used; the most 

crucial feature however was the addition of a new approach to MMN analyses. Todd 

et al. (2014a) further divided each block-context into the period just after tone roles 

switch (hereafter referred to as first half of block-contexts) and the period in which 

tones roles had been stable for some time (hereafter termed the second half of block-

contexts; see Figure 1.7).  

If confidence reaches asymptote by 0.8min, MMN to the second deviant in 

the slow-changing sequence should not differ from the first to second half of the 

block-context because the former allows ample time (1.2min) for predictive 

confidence levels to reach ceiling. Accordingly, MMN amplitude to the second  
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Figure 1.7. Diagram illustrating halves analysis using multi-timescale sequence. Sections labelled 1 (first half 
data) and 2 (second half data) show how sound block-contexts were divided for halves-analysis. Averages for 
MMN to first and second deviants were created for both stable and unstable sequences by pooling together the 
responses for first halves (i.e. the point in which tone roles switch) to produce second half 60ms and 30ms 
deviant MMNs. Averages for MMN to the deviants over the latter portion of the sound contexts for each 
condition sequences were generated by averaging together the responses for second halves to create second half 
60ms and 30ms deviant MMNs. A 40ms period of silent separated stable and unstable sequence types. (From 
Todd et al., 2014a) 

 

deviant should increase across within-context halves for the fast-changing sequence 

because 0.4 min is not quite enough time (<0.8 min) for predictive confidence to 

reach asymptote. In terms of the first deviant heard in fast-changing sequences, Todd 

et al., (2014a) reasoned that MMN would increase across halves for much the same 

reason as the second deviant. For this same deviant type heard in stable sequences, it 

was expected that MMN amplitude would indeed be larger in the first-half of block-

contexts relative to those heard in the fast-sequence and the largest MMN would be 

observed in the second-half of this same block-context. 

Once again, MMN results indicated an unexpected pattern. In the slower-

changing sound sequence, MMN amplitude to the first 60ms deviant started and 

stayed large (MMN 0-1.2 min = MMN 1.2-2.4 min) with no significant differences 

between halves observed whereas that to the second 30ms deviant increased as the 

block-context lapsed (MMN 0-1.2 min < MMN 1.2-2.4 min; refer to Figure 1.8). In 

the faster-changing sequence however, the differential effect of stability on deviant 

type was completely reversed.  MMN to the first deviant started small and increased 

significantly by the end of the second half of the block-context (MMN 0-0.4 min < 

MMN 0.4-0.8min) but did not change from first to second half (MMN 0.4 min = 

MMN 0.8 min) for the second deviant presented in the switched context (Todd et al.,  
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Figure 1.8. Halves analysis data. a. MMN difference waveforms in the unstable and stable sequences for the first 
(60ms) and second (30ms) deviant tones. MMN waveforms generated in the first-half of block-contexts (filled 
lines) is shown with those observed in the second-half of block contexts (broken lines). B. MMN amplitudes 
generated for first (grey) and second (black) half data for the first (broken line) and second (filled line) deviant 
sounds. Modified with permission from Todd et al.’s (2014a) published paper. (From Todd et al., 2014). 
 

2014a). The inclusion of a halves analysis revealed that the differential impact of 

sequence stability on MMN amplitude was strongest during the period immediately  

after the tone roles switched - a finding that was masked in earlier studies due to an 

overall net effect of MMN size across halves within each block- context type (Todd 

et al., 2011; Todd et al., 2013). The finding that the MMN amplitude produced over 

periods of 0–0.4 min in the first-half of fast-changing sequence block-contexts was 

larger than that produced in periods of 0–1.2 min in the first-half of slow-changing 

block contexts completely falsifies assumptions that the MMN amplitude always 

increases with increased sequence stability (i.e. stable-standard history).  

In the remainder of this thesis, we mostly refer to this phenomenon as first 

impression bias. We will also refer to slow-changing and fast-changing sequences as 

stable and unstable sequences, respectively. These terms are in-line with language 

used in our recent publications including that reported on in this thesis. In the next 
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section, we will argue that these data are evidence that what is first learned about 

transition statistics and their stability has a long-lasting and disproportionate 

influence over later sequence learning.  With each study comes a more developed 

understanding of how the network refers to initial experience whilst continuing to 

engage mechanisms of inference during perceptual learning. To communicate the 

most up-to-date explanation of first impression bias during sound sequence learning, 

we next focus on an interpretation of these data as it stands today. Using this 

approach means we can integrate the most up-to-date empirical data that continued 

to be published by our lab as the development of this thesis progressed with the 

literature pertaining to predictive coding models of inferential learning processes.   

1.4.2 Proposed Mechanisms of First Impression Bias. Todd et al. (2014a) consider 

contemporary models of predictive coding (Friston, 2005; Lieder, Stephan, 

Daunizeau, Garrido, & Friston, 2013) in providing a comprehensive explanation for 

how opposing patterns of MMN amplitude modulation for stable versus unstable 

sequence data could emerge. The explanation is based on the premise that the brain 

can learn both the local sound regularity (sound probabilities), and the superordinate 

regularity (the rate of block-context alternations) by accruing predictions based on 

regularities emerging at different timescales. As reviewed earlier, all predictions are 

confidence-weighted (Winkler, 2007). The proposed mechanisms for the emergence 

of a confidence-weighted first impression bias are based on two key assumptions 

namely the presence of hierarchical inference (learning over multiple timescales), 

and the capability of higher-level predictions to modulate learning rates at lower 

levels when predictive confidence is high (Friston, 2005; Kiebel et al., 2008; 

Winkler, 2007). To explain why the stable-standard history, that is sequence 

stability, differentially impacts MMN amplitude as a function of tone role order, we 
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integrate key theory about how the network engages in model updating as the multi-

timescale sequence unfolds.  

 First, data patterns limited to the stable sequence support the notion that 

probabilistic information learned at sequence onset biases learning towards this 

initial information when evidence to the contrary is presented. We can see this by 

looking at MMN results for block-contexts that match those presented at sequence 

onset versus those that do not. In block-contexts that conform to those heard first, a 

large MMN that persists across block-context halves is observed (see Figure 1.8) 

indicating rapid accumulation of high predictive confidence in the underlying model. 

This makes sense given the considerably long stable-standard history of 2.4 min. 

Yet, this same result is not observed in the block-contexts that contradict transition 

statistics learned at sequence onset. This is evidenced by smaller MMN amplitude 

after tone-roles switch that substantially increases as this block-context continues (as 

shown in Figure 1.8). This slowed rate of learning is occurring over a timeframe that 

well-exceeds temporal processing limitations of auditory sensory memory indicating 

that higher-order brain areas involved in learning over long timescales are exerting 

modulatory control over stimulus-driven processes.  

Hence, for approximately 1.2 min the network continues to suppress 

prediction error signalling, or is reluctant to engage in model updating, even though 

transition statistics defining tone roles emerging on shorter timescales have 

completely changed. As such, lower-order processes succumb to modulation by 

higher-order brain areas relying on predictions accumulated over the entire stable-

standard period in the first block-context heard. This prediction model is presumably 

reactivated with the same degree of confidence when this block-context is heard 

again later in the sequence (see Chapter 2 for appropriate analyses exploring the 
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difference between early and later sequence portions). Taken together, these data 

show that the network is biased in evaluating new sound information about sound 

transitions over time in the direction of a strong first impression (Todd et al., 2014a). 

This explanation is adept in explaining the MMN results for the stable sequence, 

however a slightly different interpretation is applied to the unstable sequence where 

stable sequence data patterns are completely reversed.  

Todd et al. (2014a) argue that unstable sound sequence data can also be 

traced to the formation of a first impression at sequence onset. The authors suggest 

that, as well as learning a first impression based on initial transition statistics, 

superordinate patterning about the stability of these statistics is also modelled with 

high predictive confidence when participants initially hear the multi-timescale 

paradigm (Todd et al., 2014a). To explain further, the superordinate pattern emerges 

when tone roles reliably switch every 2.4 min upon presentation of the stable 

sequence in its entirety. This means that when the very first block-context of the 

unstable sequence switches (unexpectedly) early, that is after 0.8 min instead of 2.4 

min, a second-order MMN prediction error signal is evoked compromising the high 

confidence associated with predictions based on a first impression. This is consistent 

with data showing that MMN increases across halves for block-contexts in the 

unstable sequence that conform to those presented at stable sequence onset where the 

first impression (i.e. 60ms deviant, 30ms standard) is locked-in (see Figure 1.8). 

Subsequently, MMN to the second deviant is no longer restricted or biased by 

learning associated with the first impression (also apparent in Figure 1.8). This is 

reflected by a large MMN irrespective of block-context half indicating rapid 

accumulation of confidence in the underlying prediction model (Todd et al., 2014a). 

More recently, Mullens et al. (2016) directly tested the hypothesis that formation of  
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a first-impression includes information about superordinate sequence structure (i.e. 

block-context length) that also informs on the relative stability of tone roles.  

Mullen’s et al.’s (2016) basic study design replicated Todd et al.’s (2014a) described 

in the previous section (see Figure 1.7 also) however the period of silence between 

sequence pairs was removed to create a decreasing-stability concatenation (stable to 

unstable block-contexts) and an increasing-stability concatenation (unstable to stable 

block-contexts), each lasting for 19.2 min (see Figure 1.9). Each concatenated 

sequence was separated by 2 min silent gap. All participants (n = 31) heard the 

decreasing-stability sequence first. Mullen’s et al. (2016) limited primary MMN 

analyses to first-half data because the first impression bias effects are strongest at the 

beginning of block-contexts (Todd et al., 2014a). To very briefly reiterate 

assumptions underlying Todd et al.’s (2014a) explanation of the bias, a superordinate 

pattern violation would occur when the block-context changes length unexpectedly 

about half-way through the experimental session. This violation would happen when 

block-contexts lengths become shorter or longer during the second half of decreasing 

and increasing concatenated sequences, respectively. If this is the case, MMN to the 

first deviant should be smaller in the second half of concatenated sequences 

compared with the first half irrespective of relative stability because confidence in 

the overall first-impression diminishes when the superordinate prediction linked to 

the first impression is violated. This is precisely what Mullen’s et al.’s (2016) data 

showed (see first deviant data in Figure 1.10A & B).  

Furthermore, MMN to the first deviant was always larger than to the second 

in the earlier portions of concatenated sequences irrespective of whether stability 

increased or decreased offering further confirmatory evidence that the network is 

bias towards learning in favor of initial experience (see unstable & stable data for  
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Figure 1.9. Decreasing- and increasing-stability sequence with halves-analysis. Graphical depiction of the 
decreasing- (top panel) and increasing-stability sequence (bottom panel) with halves-analysis under each 
(Mullens et al., 2016).  

 

increasing & decreasing concatenations, respectively, in Figure 1.10A &B). 

Removing the gap between sequence pairs produced data supporting the formation 

of a confidence-weighted first-impression that biases learning thereafter until 

assumptions about the temporal stability of the transition statistics are violated. Our 

most up-to-date explanation of data patterns underlying first impression bias is that 

the superordinate structure (i.e. block-context length) in the multi-timescale 

paradigm permits the formation of predictions about both local (tone roles) and 

higher-order patterning (i.e. tone role stability) with the influence of the latter 

revealed in predictable effects on MMN amplitude. 

The authors offer an evolutionary-plausible reason for why the network may take a 

conservative approach to new learning when a first impression associated with high 

confidence is formed (Todd et al., 2014a). Upon exposure to the very first block-

context heard at sequence onset, the network assigns differential relevance to sound 

transitions and their stability. A 30ms sound will very likely follow a 30ms sound 

and this is deemed unlikely to change given long stable-standard history. As such, 

the first standard sound is highly predictable and relatively uninformative is 
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Figure 1.10. Halves analysis data. (A) First-half MMN waveforms in the increasing- (left panel) and decreasing-
stability concatenations (right panel), separately for the first- (grey) and second-deviant tones (black) and for the 
stable (dashed line) and unstable (solid line) blocks. (B) First-half MMN amplitudes for the first- (grey) and 
second-deviant tones (black). Mean MMN amplitudes are shown separately for the increasing- (left panel) and 
decreasing-stability concatenation (right panel) for the stable and unstable sequence (x-axis). Error-bars denote 
standard error of the mean (Mullens et al., 2016).   

 

terms of adaptive significance. The sound (i.e. transition statistic) is no longer 

informative (or ‘surprising’) because its’ source has been explained away. In stark 

contrast, it is very unlikely that a 60ms sound will be heard after a 30ms sound 

meaning this sound is potentially informative in terms of learning. A rare and 

‘surprising’ sound signals that something in the environment defies our experience 

thus far, and may require deeper processing and/or a behavioural response (Todd et 

al., 2014). In this sense, the network may be reluctant to discount a first impression 
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since updating a seemingly robust model of the environment requires resource 

engagement and therefore more energy, than retaining the model as it stands.  Once 

the block-contexts switch, the network is wary of updating its model because of the 

strong belief that the first deviant is an important marker of learning that is unlikely 

to change and can potentially aid in self-preservation. We now refer to this concept 

as the information value hypothesis of first impression bias.  

Todd et al.’s (2014a) proposal for why first impression bias occurs is 

compatible with predictive coding theory. Large MMN to the first deviant indicates 

that the underlying model is associated with high predictive confidence. This rare 

deviant sound is therefore interpreted as sufficiently different from expectations (i.e. 

a truly meaningful change) that warrants redistribution of higher-order resources 

(Friston, 2003, 2005). Put simply, the network is motivated to explain away 

prediction error signalling to maximise model evidence and keep the agent safe. In 

the multi-timescale sequence, this very reliable prediction model formed at sequence 

onset continues to be relied upon over the longer-term. So much so in fact, that the 

network will maintain predictions underlying a first impression (i.e. within stable 

sequence effects) even when transition statistics suddenly change. It is only when 

predictions about the longer-term stability of transition statistics underlying the first 

impression are violated upon presentation of the unstable sequence, that learning bias 

is absolved.  

The reason why a drop in predictive confidence occurs in the switched 

context of stable sequences is not the same as that for the drop observed for unstable 

block-contexts that match those heard at the onset of the multi-timescale sequence. 

Predictions about transition statistics coded in a first impression are constrained by 

superordinate predictions about their stability formed over the longer-term (i.e. the 
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entire stable sequence duration). When the environment becomes more volatile (i.e. 

tone roles switch earlier than predicted), predictive confidence in both first and 

second-order assumptions underlying the first impression is compromised. This 

means the network is now less certain about whether the first impression is still the 

best model of the environment for keeping the agent safe and thus whether the 

deviant is a truly meaningful sound event (Friston, 2003). Higher-order resources are 

presumably conserved until the network has sufficient confidence in a new and 

improved prediction model. Sequence learning following this superordinate pattern 

violation results in active sound information gathering based on dynamic changes on 

local timescales made evident by rapid accumulation of predictive confidence for the 

second deviant present in unstable block-contexts.  

These data are consistent with literature showing that under typical 

conditions in which MMN modulation is driven by local sound statistics only (such 

as those used in oddball designs), this waveform is quickly observed after 2-3 

repetitions of a deviant sound (Sams et al., 1993). Such explanations of order-driven 

effects on MMN are also consistent with assumptions put forward in Hierarchical 

Gaussian Filtering models of learning under uncertainty in which it is proposed that 

the brain can learn about local transition contingencies, the tendencies in those 

transition contingencies as well as the likelihood that transition contingencies will 

change over time (Mathys, Daunizeau, Friston, & Stephan, 2011; Mathys et al., 

2014). The rate of model updating following a prediction error will depend on 

confidence in predictions (i.e. precision estimates) at a given level of the hierarchy 

and the level above. With respect to the multi-timescale sequence, this explanation 

would predict that model updating in the presence of an unexpected sound event will 

be constrained by one’s model of the likelihood that transition statistics will change.   
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 The key message to be taken from Todd and colleagues studies is that the 

brain has the capacity to form first and second-order predictions during first-

impression formation that impact on sound pattern extraction over many minutes. 

This shows that modelling of sound regularity can far exceed the temporal capacity 

of mechanisms associated with auditory sensory memory (i.e. 30ms; Winkler et al., 

2002). These data cannot be fully accounted for my mechanisms proposed under 

SSA accounts of auditory mismatch processes. Furthermore, these data show that the 

brain is resistant to new learning, or model updating, despite a widely-held 

assumption that MMN should always occur within 2-3 repeats of a deviant sound 

(Sams et al., 1993; Winkler, 2007). These data also provide support, albeit indirectly, 

that higher order brain play a pivotal role in sound relevance filtering by 1) 

monitoring sense data over longer time-scales and 2) modulating responsiveness to 

dynamic sound change in the shorter-term when there is high certainty that 

predictions modelled over the longer-term provide a richer representation of inputs 

emerging on multiple temporal scales.  

Evidence that the brain succumbs to first impression bias effects during 

relevance filtering of and learning about the sound environment underpins the 

rationale for each study outlined in the present thesis. In the proceeding sections, the 

results of four studies all with the shared aim of delineating conditions in which first 

impression bias effects on learning are observed and/or modified will be described. 

We think it is important to state here that the formatting of each chapter conforms to 

how it was published (e.g. Chapter 1) or how we intend to submit for peer review to 

publish (e.g. Chapters 2-3). As such, we express repentance that a number of 

introductory statements may be repetitious. In all cases, supplementary analyses of 

standard and deviant ERPs are presented in Appendices in the closing pages of this 
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thesis. In brief, we first report on one study demonstrating that first impression bias 

effects are still observed when a much larger sample size is used and that effects 

remain despite repeated exposure to elements of the multi-timescale sequence. Next, 

we present data indicating that bias effects are no longer observed when increased 

task demand is placed on resources required for monitoring sound patterns emerging 

over longer timescales. Finally, we present a pilot study that aimed to explore what 

happens when people are informed of the temporal structures before hearing the 

multi-timescale sequence. Indeed, typical bias patterns were altered yet first-order 

learning effect remained. 
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Study Motivation 

In this chapter, we present a published research article featuring two studies used to 

report on the robustness of the bias (see Appendix 1 for acknowledgement of 

acceptance for publication). In achieving this, we first tested whether patterns of 

order-driven bias replicate in a much larger data set compared to previous studies 

comprising a relatively smaller sample size. In a separate study, we tested the 

longevity of first-impression bias by examining whether patterns remain with 

repeated exposure to a role-alternating sound sequence.  
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2.1 Introduction 

Research on the mismatch negativity (MMN) component of the auditory 

event-related potential (ERP) has flourished over the last 35 years with peer-

reviewed publications on this topic exceeding 2000 and more than 200 of these have 

explored its characteristics in persons diagnosed with schizophrenia. The robust 

observation that MMN amplitude is reduced in schizophrenia has spawned a prolific 

effort to validate its utility as a biomarker in this group (see Atkinson, Michie, & 

Schall, 2012; Bodatsch et al., 2011; Stephan, Baldeweg, & Friston, 2006; Gil-da-

Costa, Stoner, Fung, & Albright, 2013; Javitt, Zukin, Heresco-Levy, & Umbricht, 

2012; Light et al., 2012). In both persons with schizophrenia and healthy comparison 

groups the MMN is elicited following the presentation of a rare, unexpected sound 

within a repeating stimulus pattern (Javitt et al., 1998). Yet, the signal is typically 

significantly smaller schizophrenia than it is in healthy controls. Evidence suggests 

MMN is elicited only when a prediction model containing information about 

regularity exists and that the brain uses this model to anticipate future sensory input 

and minimise prediction-error (Winkler et al., 1996; Winkler 2007; Winkler & 

Czigler, 2012). It is therefore possible that smaller MMN in those with schizophrenia 

indexes impairment in predictive processing (Stephan et al., 2006; Todd et al., 2012). 

However, a necessary prerequisite for interpreting reduced MMN in those with 

schizophrenia is the need for a comprehensive understanding of the factors that 

impact MMN amplitude more generally. It is this pursuit that has uncovered highly 

unexpected order-driven influences on MMN in a “multi-timescale” paradigm (Todd 

et al., 2011). This bias contradicts the notion that MMN will always be larger in 

amplitude when a pattern has been stable for longer and exploring the cases and 
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limits of this bias can help us better understand the timescales of memory 

influencing MMN amplitude.  

This paper features two studies designed to explore why MMN amplitude in 

healthy populations doesn’t always increase uniformly when patterns are more 

stable. In study 1 we report a replication of the patterns of order-driven bias in MMN 

amplitude in a much larger dataset and in study 2 we demonstrate the persistence of 

this bias despite repeated exposure to sound sequences that should theoretically 

abolish its affect. Finally, we discuss how these order effects may help provide a 

deeper understanding of factors impacting MMN amplitude in non-clinical groups 

and emphasize there is still much to be learned for MMN that may influence its use 

as a meaningful tool in clinical groups such as schizophrenia.   

2.1.2 MMN and the Multi-timescale Design. In a classic oddball paradigm, MMN 

will be observed in the auditory ERP when a sound violates regularity within a 

repetitious sequence (Näätänen, 1992). The sound may contain a rare physical 

feature deviation (as in most schizophrenia studies), a rare combination of features or 

may occur with unexpected timing (e.g., unexpectedly early or late repeat; Kujala et 

al., 2007). Increasingly, prominent views conceptualize the brain as capable of 

sophisticated hypothesis-testing and of using internal models to make predictions 

about future states of the sensory world (Winkler, 2007; Winkler & Schröger, 2015; 

Friston, 2005; Friston & Stephan, 2007). From this perspective, the MMN is 

considered a prediction-error signal that indicates the degree to which an expected 

state differs from that which is actually experienced.  As models of the processes 

underling MMN have matured, it is clear that MMN amplitude is tightly coupled to 

some quantification of “confidence” in the underlying predictions about future sound 

properties (Lieder et al., 2013; Winkler, 2007). Expressed simply, the confidence in 
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an active prediction model will depend on the variability of incoming sensory input.  

A large amount of variation is apparent when the environment is highly unstable and 

this undermines confidence that the active model can accurately predict incoming 

stimuli. Predictions associated with high confidence are observed when regularity is 

extremely simple (e.g., a repeating identical tone) and highly stable/probable (Lieder 

et al., 2013). Confidence accumulates each time predictions successfully match 

sound input and this leads to a more accurate model with high precision. A possible 

ERP correlate of trace/prediction accumulation is the so-called repetition positivity 

(RP; Haenschel, Vernon, Dwivedi, Gruzelier, & Baldeweg 2005). Deviations from 

predictions that occur under conditions of high confidence will elicit a significantly 

larger MMN error signal (manifest as increased negativity in evoked potentials in 

fronto-central scalp electrodes 80-250 ms after detected deviation).  

Most studies investigating MMN in schizophrenia use relatively simple 

sound sequences (e.g. sounds deviating on no more than a few features; see Todd, 

Harms, Schall, & Michie, 2013 for review). However, the exploration of MMN in 

alternate paradigms continues to facilitate a deeper understanding of normal 

predictive processes because the MMN responses elicited in stimulus paradigms 

with dynamically changing standard/deviant configurations reveal how the auditory 

system adjusts its predictions in accordance with the changing roles of the sounds 

(Cowan et al., 1993; Garrido et al., 2008; Winkler et al., 1996). Studies varying 

standard/deviant probabilities within subjects have shown that MMN amplitude 

plateaus at a certain point in controls and it plateaus at lower amplitude in patients 

with schizophrenia (Sato et al., 2003; Shelley, Silipo, & Javitt, 1999; Javitt et al., 

1998) while Baldeweg and colleagues (2004) have found that the number of 

standard-stimulus repetitions needed to establish confident predictions correlated 
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with the severity of schizophrenic symptoms. It is therefore possible that the 

predictive processing system is less than optimal in persons with schizophrenia 

(Todd, Michie, Schall, Ward, & Catts 2012). One way in which impaired processing 

could arise is through a limitation in the period over which confidence in a prediction 

model accumulates.  For example, a system that can store accumulated confidence in 

a model over a period encapsulating 100 events could adjust response characteristics 

to differentially code errors as rare as 1% while a system limited to 20 events could 

not distinguish between an error frequency of 5% and 1% (such as in controls versus 

patients, see Figure 2 in Javitt et al., 1998).  

The design principle in the multi-timescale paradigm was to keep local 

standard/deviant probabilities constant (0.875 and 0.125, respectively) and explore 

how changes in the longer-term stability of these patterns affected MMN in healthy 

people (Todd et al., 2011).  The sequences within the multi-timescale paradigm 

contain two physically different sounds that alternate standard and deviant roles over 

time (see Figure 1). Previous research shows that perceptual inferences reflected in 

prediction models are updated very dynamically such that a model will be altered 

after as few as 2-3 consecutive errors causing a new repetition (Bendixen, Prinz, 

Horvath, Trujillo-Barreto, & Schroger, 2008; Sams et al., 1983). The properties of a 

former deviant will be incorporated into a new prediction model after a few 

repetitions, so a former standard in the multi-timescale sequence will come to elicit 

MMN when it occurs as a rare deviation from this new context.  In separate 

sequences within the multi-timescale paradigm, the period of standard/deviant 

stability is varied such that in fast changing “unstable” sequences, the roles reverse 

after 160 tones (0.8 min) and in “stable” sequences, they reverse after 480 tones (2.4 

minutes). The design was based on the expectation that participants affected by a 
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long history of sound would show larger MMN in stable than unstable sequences. 

However, if participants were only affected by a short history, for example < 0.8 

minutes, this should result in minimal differences in MMN amplitude in the different 

stability sequences. The surprise finding was that both patterns were in fact present 

in the same participants. MMN to deviant sounds in those periods in which the 

standard/deviant configuration matched the one encountered at the sequence onset 

(first-deviants) showed a clear stable > unstable result, while MMN to deviant 

sounds encountered in periods in which the roles had been reversed (second-

deviants) was equivalent in amplitude for both sequences (Todd et al., 2011).  

In Todd et al., (2011), role stability also had an impact on ERPs to standard 

sounds which emerged in the ERP as an apparent increase in positivity (although 

technically the combined effect of decreased N1 and increased P2) in stable relative 

to unstable sequences. However, this effect was consistent across tone type (i.e., no 

order effect) leading the authors to deduce that the bias phenomenon is driven by 

changes in ERPs to the deviant sound and does not modulate the RP appearing in the 

standard-stimulus response. In subsequent studies, the same basic pattern of bias has 

been observed to different feature deviations and so is clearly tied to the first-

deviant, second-deviant status of the tones (Todd et al., 2013a; Todd et al., 2013b; 

Todd et al., 2014; Mullens et al., 2014).   

A similar order-driven effect on MMN amplitude has been observed (Costa‐

Faidella et al., 2011) in a study designed to replicate animal work showing long 

timescale stimulus specific adaptation effects on standard and deviant ERPs 

(Ulanovsky, Las, Farkas & Nelken, 2004). Stimulus-specific adaptation (SSA) refers 

to the reduced spiking rate in neural response to a repeated stimulus. The paradigm 

used by Costa-Faidella et al. featured much shorter sequences (25 sec) containing 
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two tones that switch roles as standard and deviant midway through. The authors 

observed that MMN amplitude to first standard when it later occurred as a deviant 

(after the switch) was smaller overall due to an initial “suppression” of response 

immediately after the roles reversed. This suppression of response to a deviant with a 

long prior history of repetition was attributed to the possible existence of a subgroup 

of auditory neurons that exhibit adaptation to sound probability on multiple 

timescales.  

The multi-timescale paradigm revealed that MMN size following a pattern 

violation is susceptible to order-driven bias and is not a simple function of pattern 

stability and local sound statistics. An important consideration in understanding this 

phenomenon is whether this can be accounted for by factors sometimes referred to as 

“bottom-up” (meaning a modulation of response that can be accounted for by the 

history of sensory input) or “top-down” (meaning a modulation of response that is 

imposed on the auditory system by an explicit prediction-model). The degree to 

which bottom-up and top-down factors account for MMN has attracted considerable 

debate (see Näätänen et al, 2005 for discussion). Current views suggest that both can 

contribute to the generation of this ERP component (Sussman, 2007) and that the 

bottom-up contribution is required (Sadia, Ritter & Sussman, 2013). Indeed, the 

degree to which each contribute to smaller MMN in schizophrenia has also attracted 

debate (Baldeweg, Klugman, Gruzelier & Hirsch, 2004, Dima, et al., 2012). An 

order-driven impact on MMN amplitude could conceivably be reliant on either top-

down or bottom-up effects on the ERP. The order-driven MMN modulation 

observed by Costa-Faidella and colleagues (2011) probably exemplifies a bottom-up 

effect because it mirrors the SSA finding of Ulanovsky and colleagues (2004), which 
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is generally accepted to be a “bottom-up” contribution to the process generating 

MMN. 

Although the order effects in the multi-timescale sequences occur over much 

longer timeframes, it is likely that similar mechanisms contribute to the observed 

bias. However, at least two observations indicate that top-down effects must also 

contribute to MMN patterns in this data. Firstly, the effect of tone order on MMN 

amplitude in multi-timescale sequences is actually sensitive to the behavioural 

relevance of the sounds. In Mullens et al. (2014), participants initially heard the two 

sounds with equal probability and were asked to respond as quickly and accurately 

as possible to either the shorter sound (short-go group) or the longer sound (long-go 

group). The appearance of order-effects on MMN amplitude in a subsequent multi-

timescale sequence differed in these two groups in a task-dependent manner. This 

result cannot be explained by “bottom-up” influences because the two groups heard 

the sounds with exactly the same probabilities and orders; the only difference was 

what they were asked to do in response to the sounds.  

The second observation indicating that the order-effects observed in the 

multi-timescale sequences may reflect top-down influence is the focus of study 1 in 

the present paper. It was previously observed that the order effect on MMN 

amplitude is different in slowly changing (stable) sequences than in subsequent 

faster-changing (unstable) sequences in the multi-timescale paradigm. Explaining 

this differential pattern of data imposes a strong assumption on the bottom-up 

adaptation-based explanation of the order-driven effects: The strong adaptation 

developed for the standard in the final block of the stable sequence suppresses the 

response to this tone when encountered as the deviant in the following unstable 

sequence. If this was the case, the adaptation-based bias should diminish during the 



CHAPTER 2: SEQUENTIAL EFFECTS ON MMN 

95 
 

course of the alternations of the unstable sequence. Testing this possibility requires 

averaging low number of trials per participant and thus requires a larger group for 

sufficient statistical power. In study 1, we determine whether the finding of different 

effects in stable vs. unstable sequences can be replicated in an expanded dataset and 

to test whether the differential effect is confined to the initial segment of the unstable 

sequence. In study 2, participants were presented with four occurrences of either the 

stable sequence or the unstable sequence to determine whether the order-effects 

would diminish with repeated exposure. We ask whether assuming the presence of 

top-down influences is necessary to account for the results of both studies. 

Implications about general factors impacting MMN amplitude are also discussed.  

 

2.2 Method - Study 1  

2.2.1 Participants. The data comprised 14 individual data sets from Todd et al. 

(2013b) plus an additional 21 unpublished data sets collected subsequently under 

identical conditions. The data therefore consisted of 35 (22 females, 18-33 years, 

mean = 23 years, SD = 4 years) healthy community volunteers and undergraduate 

students from the University of Newcastle, Australia. All data sets were collected 

under standards approved by the local Human Research Ethics Committee. A 

structured interview was conducted by one of the researchers to ensure all 

participants met criteria for inclusion which stipulated normal hearing, no history of 

head injury of neurological condition, no current mental illness or family history of 

psychosis and no alcohol or substance abuse. Remuneration was offered as course 

credit to students and cash reimbursement to community volunteers. Written 

informed consent was obtained from all participants consistent with standards 

approved by the Human Research Ethics Committee. 
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2.2.2 Stimuli and sequences. Sounds were 1 kHz pure tones presented binaurally 

over headphones at 75 dB SPL with 5 ms rise/fall times and either a 20 ms or a 50 

ms pedestal to produce 30 ms and 60 ms sounds, respectively. Sounds within 

sequences were arranged within long-deviant and short-deviant blocks. In long-

deviant blocks, 30 ms tones were highly probable (p = 0.875) and 60 ms tones were 

rare deviants (p = 0.125); in short-deviant blocks, the tone probabilities were 

reversed (30 ms and 60 ms presented at p = 0.875 and 0.125, respectively; see 

Figure 2.1). In separate sequences, long- and short-deviant blocks were presented at 

either slow or fast block-alternation speeds (hereafter referred to as stable and 

unstable sequences, respectively) with sequences always commencing with long- 

preceding short-deviant (hereafter referred to as first and second-deviant, 

respectively). Each sequence consisted of 1920 tones in total, 960 of each duration. 

Tones were presented at a regular 300 ms stimulus onset asynchrony (9.6 min 

per sequence). In the stable sequences, sounds were arranged in four blocks with 

block-type type alternating after every 480 sounds, producing a stable-standard 

period of 2.4 min. In the unstable sequence, sounds were arranged in twelve blocks 

with block-type alternating every 160 tones, creating a stable-standard period of 0.8 

min.  Note, full counterbalancing of sequence order and tone role as first or second-

deviant was not performed here but was present in Todd et al. 2011 and 

counterbalancing of first-deviant identity was also present in Mullens et al. 2014 and 

Todd et al 2014. 

2.2.3 Procedure. All participants completed a screening interview to ensure 

inclusion criteria were met. An audiometric screen using a pure tone audiometer 

(Earscan ES3S) across 500 Hz-4000 Hz was used to assess hearing thresholds (≤ 25 

dB SPL) to ensure absence of hearing loss. Participants were then fitted with a 
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Figure 2.1. A diagram illustrating the multi-timescale sound sequences a The diagonal lined rectangles represent 
one deviant block type and the greyed rectangles, the other. In the blocks marked with diagonal lines, the long 
(60 ms) sound was the rare (p = 0.125) deviant and the short (30 ms) sound was the highly probable (p = .875) 
standard. In the greyed blocks, the probabilities were reversed. The block length within stable and unstable 
sequences were 2.4 and 0.8 min respectively, creating a difference of stability in the relative tone probabilities b 
Sections labelled 1(first-half data) and 2 (second-half data) show how blocks were divided for halves-analysis as 
detailed in Todd et al. (2013a). Averages for MMN to the deviants were created for both stable and unstable 
conditions by pooling together the responses for first-halves (i.e. the point in which tone roles transition) to 
produce first-half long- and short-deviant MMNs (from Todd et al., 2013a).  
 
 

Neuroscan Quik-Cap with Ag/AgCl electrodes. The continuous EEG was recorded 

on a Synamps 2 Neuroscan system at 1000Hz sampling rate (highpass 0.1 Hz, 

lowpass 70 Hz, notch filter 50 Hz and a fixed gain of 2010). EEG data were 

collected from 13 electrode locations (FZ, CZ, PZ, F3, FC3, C3, F4, FC4, C4, F7, F8 

in accordance with the 10-20 system, plus left and right mastoid) and referenced to 

the nose. In addition, vertical and horizontal electro-oculograms were recorded using 

electrodes placed above and below the left eye, and 1cm from the outermost canthus 

of each eye to monitor eye-blinks and -movements. All impedances were reduced to 

below 5 kΩ. Sequences were presented over headphones (Sennheiser HD280pro) 

while the participant viewed a film (sound muted) with sub-titles. Participants were 

told they would hear sounds over the headphones but that the brain responses we 

were studying were automatic and best recorded if they could try to ignore the 

sounds and focus attention on the film. 

2.2.4 Data Analysis. The continuous EEG recording was examined offline for major 

artefact and corrected for eye blinks using the procedures in Neuroscan Edit 

Software. This method applies a regression analysis in combination with artefact 

averaging (Semlitsch, Anderer, Schuster, & Presslich, 1986). The values generated 

was assessed for adequacy (> 30 sweeps in the average and < 5% variance) and 
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applied to the continuous data file. Each file was epoched from 50ms pre-stimulus to 

300ms post-stimulus. Epochs were baseline corrected to the pre-stimulus interval 

and averaged according to stimulus type. Epochs containing variations exceeding ± 

70 µV were excluded.  

Standard and deviant ERPs were created separately for the period equating to 

the first-half of blocks (0-1.2 minutes for blocks in stable sequences and 0-0.4 

minutes for blocks in unstable sequences) and for second-half of blocks (1.2-2.4 

minutes for blocks in stable sequences and 0.4-0.8 minutes for blocks in unstable 

sequences; see Figure 1). This was essential as Todd et al. (2013a) observed the bias 

effects to be prominent in first-half data only. Data for stable and unstable sequences 

were used to create four ERPs to standard tones and four to deviant tones (first-half 

first-deviant, second-half first-deviant, first-half second-deviant, second-half second-

deviant). All standard and deviant ERPs were digitally filtered with a 30 Hz lowpass 

filter.  Difference waveforms were generated by subtracting the ERP to a sound as a 

standard in the first- or second-half of blocks from the ERP to that same sound as a 

deviant in the same block period for each sequence. The majority of participants had 

between 50 and 60 deviant sweeps contributing to averages with a minimum of 43 

for any deviant waveforms.  MMN amplitude was quantified by extracting the mean 

peak amplitude over a 20 ms period centred on the most negative point 100-250 ms 

post-stimulus onset. As per Todd et al. (2013a), a total of eight MMN values were 

compared at F4 (where the MMN was maximal) in repeated measures ANOVA with 

sequence (stable, unstable), deviant (first-deviant, second-deviant) and half (first, 

second) as within-subject factors. Paired (two-tailed) t-tests were performed for a-

priori simple effects with p-value set at .05.  
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2.3 Results  

Difference waveforms for the first and second-deviant in stable and unstable 

sequences across first and second block halves are presented in Figure 2.2 and the 

corresponding mean amplitude values are presented in Figure 2.3. There is a clear 

MMN evident for each of the sequence types, for each of the deviants and for both 

the first and second half of sequence blocks. However, in the stable sequence (Figure 

2A), MMN appears to increase more over the first to second half of blocks for the 

second-deviant than the first, while the reverse appears to be true for the unstable 

sequence (Figure 2B). Analysis revealed main effects of sequence (stable generally 

larger than unstable, F (1, 34) = 14.84, p < .001, η2= .30) and half (second-half 

generally larger than first-half, F (1, 34) = 10.64, p < .01, η2= .24) but these patterns 

were further modified by a significant deviant x sequence x half (F (1, 34) = 7.77, p 

< .01, η2= .19) interaction meaning that the stability effects reflected in sequence 

and half were different for the first-deviant and second-deviant MMNs.  

For the first-deviant there was a main effect of sequence (stable > unstable, F 

(1, 34) = 15.39, p<.001, η2= .31) and half (second > first, F (1,34) = 6.02, p<.05, 

η2= .15) with no interaction. However, planned analyses revealed that the MMN 

only increased significantly over halves for the unstable sequence (t (34) = 2.77, p 

<.01) and the effect of sequence was significant in first-half data only (t (34) = 4.04, 

p <.001) and this is clear in Figure 3A. In contrast, for the second-deviant there were 

no main effects but a significant sequence by half interaction (F (1, 34) = 8.36, 

p<.01, η2= .20). This was due to MMN increasing significantly over halves for the 

stable 
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Figure 2.2. Difference waveforms in replication study. A. Stable Sequence and B. Unstable Sequence for first (60 
ms) and second (30 ms) deviant. Difference waveforms for data obtained in the first-half of blocks (solid lines) 
are presented with those in the second-half of blocks (broken lines).  
 
 

 

Figure 2.3. Bar graphs showing group mean MMN amplitudes. Group mean amplitude for mismatch negativity 
(MMN) for the first-deviant (left) and second-deviant (right) in first and second halves of stable and unstable 
sequences. Asterisks denote significant difference across a sequence block type. ** = p<0.01, ***=p<0.001. 
 

sequence only (see Figure 2.3, t (34) = 3.01, p <.005) and the effect of sequence only 

being significant for the second half of blocks (t (34) = 2.93, p <.01).  

The reverse pattern of block half effects in the Stable and Unstable sequences 

could potentially be explained by the long period of 60ms standard tones at the end 

of the Stable sequence leading to reduced response to these tones as deviants in the 

subsequent Unstable sequence. This could be expected to result in differential 

changes in Unstable sequence MMNs for the first and second deviants over early 
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versus later blocks of the sequence. Early MMN (to deviants in the first 3 blocks) 

versus later MMN (to deviants in the second 3 blocks) was compared over tones in 

repeated measures ANOVA.  The analysis yielded no significant main effects nor 

interactions. Means for early and late MMN for the first-deviant (M = -2.03, SD = 

2.31 & M = -2.08, SD = 2.08, respectively) and for the second-deviant (M = -2.54, 

SD = 1.79 & M =-1.77, SD = 2.07, respectively) were very similar but the evidence 

was not strong enough to support early and later block values coming from a sample 

with the same mean based on a city-block distance test (Widmann & Schröger, 1999).   

2.4 Discussion.  

The larger data set presented here (n = 35) replicates the finding that MMN 

amplitude is differently affected in the multi-timescale sequences for the first and 

second-deviant tones (Todd et al., 2013b). When examining stability effects within 

the stable slowly changing sequence MMN amplitude for the first-deviant is already 

large in first-half data and stays large over second-half data showing minimal growth 

from the period when roles were initially established versus later in the block when 

confidence has had additional time to accumulate. In contrast, MMN to the second-

deviant tone is significantly smaller in first-half of the blocks than in the second-half 

of blocks showing a clear stability effect. This observation is consistent with that 

reported in Todd et al., 2013 and is also consistent with that of Costa-Faidella et al., 

(2011) where MMN to a deviant with a long prior history as a standard is initially 

very small but recovers with increasing stability in the new pattern. As per Costa-

Faidella, no order-patterns were reflected in the standard ERPs, but only in deviant 

ERPs and resultant MMNs (see Appendix 2 for standard & deviant analyses). 

The data obtained in the unstable sequence exhibits the opposite pattern even 

though the sequences commence with the same standard and deviant roles. For 
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unstable sequences, MMN to the first-deviant is initially small but increases 

significantly across block halves, while that to the second deviant is actually as large 

during the first-half of the blocks as it is by the second-half. In fact, it is evident from 

Figure 2.3 that the MMN obtained after a period of 0.4 minutes stability in the 

unstable sequence data is as large as that obtained after 1.2 minutes of stability in the 

first-half of the stable sequence blocks.  

Can long timescale adaptation of afferent neuronal assemblies explain the 

reversal of order-effects on MMN in the unstable following stable sequence? One 

possible explanation could relate to the first-deviant being the highly repetitious 

standard in the final block of the stable sequence. If a strong adaptation is developed 

it could potentially influence the response to this tone as a deviant in the following 

unstable sequence. If this were the case one might expect this effect to diminish over 

the course of the sequence leading to larger amplitude MMNs to the first-deviant in 

later blocks. There was no evidence in the data that this was the case so while we 

cannot rule out an adaptation explanation the data do not provide strong support for 

it. Incidentally the absence of a significant difference in MMN for the early and late 

blocks of the Unstable sequence occurs in the presence of a significant difference 

between the first and second halves of these blocks. Although it is difficult to draw 

conclusions from these subgroupings of data it is certainly consistent with Todd et 

al.’s (2013) suggestion that the difference over block halves is something that is 

repeated each time the blocks are encountered. 

Todd et al., (2013) alternatively proposed that the order-effects may be 

explained by a lasting “first-impression”. They hypothesized that the standard and 

deviant roles (or probabilities) first encountered at sequence onset are “locked-in” as 

a type of prior; that is, an assumption about the probability distribution defining the 
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likelihood and/or importance of future events (Griffiths et al. 2008). The repetitive 

standard tone is rapidly established to be a predictable event providing minimal new 

information while the deviant occurs unexpectedly as a potentially relevant violation 

of expectations. When the roles are encountered in the reverse order, there is initially 

very low confidence that the former repetitive standard is now an informative error 

signal. It is recognised as an error relative to the new prediction model (i.e., MMN is 

elicited) but it is initially “suppressed” in amplitude until later in the block when the 

evidence sufficiently counters the first impression. The authors suppose that the first-

impression formed in the stable sequence may include a superordinate variable (or 

hyperprior, Bernado & Smith, 2000) specifying the block length. The block-length 

model would be violated in the subsequent unstable sequence when the first block-

type stops too early. As a consequence, the first-impression about tones may drop to 

a low-confidence weighting because the super-ordinate assumption was wrong. This 

could explain why MMN to the first-deviant becomes smaller at block onsets that 

reactivate a role assumption with low-confidence but increases over the block when 

counter-evidence accumulates with stability. This explanation would, in turn, imply 

that unstable sequences encountered in isolation (i.e., not following a stable 

sequence) would produce the pattern of data observed in the stable sequence above 

because the first-impression would simply be linked to the onset structure of this 

sequence. 

In study 2, we used a between-subjects design to explore the longevity of the 

order-effects on MMN. Specifically, we exposed participants to four occurrences of 

either the stable sequences or unstable sequences to determine whether the patterns 

observed in study 1 survive repeated experience with the sequences. Repeated 

experience of a given sequence structure could eventually overpower any biases or 
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assumptions that do not hold value in predicting the environment over the longer 

term (see Mathys, Daunizeau, Friston, & Stephan, 2011). Study 2 also facilitated a 

test of the hypothesis that the unstable sequence data produced in study 1 were due 

the influence of the prior stable sequence structure and an additional test of whether 

adaptation at the end of the stable sequences could explain the unstable sequence 

data. If such adaptation effects were present, repeats of the stable sequences should 

be subject to the same influence in which the adaptation to the standard at the end of 

the sequence should lead to smaller MMN to this sound as a deviant in the 

subsequent repeat presentation. 

 

2.5 Method - Study 2  

2.5.1 Participants. Participants included 30 (21 females; 18-27 years, mean = 21 

years SD = 2 years) naive healthy community volunteers and undergraduate students 

from the University of Newcastle, Australia meeting the same inclusion criteria as 

study 1. Remuneration was offered as course credit to students and cash 

reimbursement to community volunteers. Written informed consent was obtained 

from all participants consistent with standards approved by the local Human 

Research Ethics Committee. 

2.5.2 Stimuli and sequences. The protocol was a modification of Todd et al.’s 

(2013a; described in study 1) multiple-timescale paradigm comprising of four 

occurrences of either the stable sequence (stable condition) or the unstable sequence 

(unstable condition). For both conditions, a 1 min break occurred between each 

sequence repeat. 

2.5.3 Procedure. Screening and EEG data acquisition procedure was identical to 

study 1. Condition allocation alternated with recruitment order (three males in the 
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stable condition and six in the unstable; and mean age of 22 years in both 

subgroups). Sixteen participants were allocated to the stable condition and the 

remaining 14 participants to the unstable condition. Sequences were presented over 

headphones (Sennheiser HD280pro) while the participant viewed a film (sound 

muted with sub-titles and instructed to focus on the film as per study 1). 

2.5.4 Data Analysis. EEG data analysis was identical to study 1 and generated ERPs 

for the period equating to the first- versus second-half of blocks for each tone, in 

each sequence and repeat. This resulted in 8 standard and 8 deviant ERP averages 

per tone (therefore 16 standard and 16 deviants per participant, per presentation). 

The minimum sweeps contributing to an average for any participant was 44 with the 

mean between 58 and 59 for all deviant waveforms. Eight difference waveforms 

were generated for each tone (first and second halves for each for the four 

sequences).  

The mean-peak amplitudes were quantified as the maximum negativity in 

difference waveforms over a 20 ms period centered on the most negative point 100-

250 ms following stimulus onset. The purpose was to determine whether the 

expected tone x half interactions seen in study 1 diminished with repeated 

presentations. Amplitudes were therefore compared in a mixed model ANOVA at F4 

with condition (stable, unstable) as a between-groups factor and within-subjects 

factors of half (1st, 2nd), deviant (first-deviant, second-deviant) and presentation 

(Sequence 1, Repeat 1, Repeat 2, and Repeat 3). Paired t-tests were performed for 

planned comparisons using simple effects with p-value set at .05. Effects on deviant 

versus standard tones are presented in supplementary data and confirm that the bias 

is present in response to deviants only. 
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2.6 Results. 

Difference waveforms for first and second-deviant, across each block half, 

and each presentation, are presented for stable versus unstable sequences in Figure 

2.4. Analysis revealed main effects of presentation (F (3, 84) = 9.24, p < .001 η2= 

.25), deviant (F (1, 28) = 18.15, p < .001 η2= .39), half (F (1, 28) = 17.80, p < .001 

η2= .38) and condition (F (1, 28) = 27.64, p < .001 η2= .50). While the main effect 

of condition is due to MMNs being larger overall in the stable group, the main 

effects of deviant, half and presentation were further modified by significant 

interactions between deviant and half (F (1, 28) = 6.42, p < .05 η2= .19) and deviant 

and presentation (F (1, 28) = 2.83, p < .05 η2= .09).  

From Figure 2.4 it is apparent that the deviant by half interaction occurs due 

to MMN being smaller in the first-half than the second-half of sequence blocks for 

the second-deviant but not the first. This was confirmed in analyses conducted 

separately for the first and second deviant. For the first deviant, there was a 

significant main effect of condition (MMN smaller in the unstable group, F (1, 28) = 

18.81, p < .001 η2= .40) and presentation (F (3, 84) = 5.79, p < .001 η2= .17), with 

the latter modified by a significant presentation x half interaction (F (3, 45) = 6.30, p 

< .05 η2= .11). This interaction was due to presentation affecting MMN size in the 

second-half of blocks (MMN decreasing over presentations, F (3, 84) = 10.65, p < 

.001 η2= .28) but not the first-half (p =.76). MMN did not differ significantly over 

halves for the first-deviant in any of the four presentations (p >.09 for paired t-tests 

over halves in all stable and unstable sequences). In contrast, the analysis of second- 
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Figure 2.4. MMN waveforms in repeated sequence design study. Difference waveforms for the first (A = 60 ms) 
and second (B =30 ms) deviant in the 1st and 2nd half of stable (black solid lines) and unstable (grey broken lines) 
sequences. Difference waveforms are presented separately for data acquired in the first, second, third and fourth 
sequence presentation. 

 

deviant MMNs confirmed a main effect of half (F (1, 28) = 33.12, p < .001 η2= .54) 

due to MMN incrementing across halves across all presentations. A main effect of 

presentation was also present (F (3, 26) = 6.39, p < .001 η2= .19) due to a reduction 

in MMN amplitude across repeating sequences.  
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An additional analysis step was conducted on the stable sequence group data 

in light of the consistency of the differential effect of stability on the first and 

second-deviant MMNs over presentations. The data from the first and second halves 

of sequence blocks were further broken down into early and late blocks within the 

sequence. These were in turn averaged over sequences to create four MMNs per 

deviant type. Specifically, this produced an across-presentation average for the first-

half and second-half of the early sequence block and the first-half and second-half of 

the later sequence block. This facilitated an examination of whether the stability 

patterns change from the first occurrence of the block to when the block occurred a 

second time. The average difference waves (minimum 90 sweeps) for each deviant 

and block are presented in Figure 2.5B and C along with a grand average of first-half 

and second-half stable sequence difference waves over the four presentations in 

Figure 2.5A. For transparency, the grand average deviant and standard responses are 

also presented in the bottom panel of Figure 2.5 (see Supplementary data on pg. 88). 

It is clear from Figure 2.5B that although MMN to the first-deviant drops in 

amplitude from the early to the late block, the tendency for MMN to be more-or-less 

the same amplitude in both block halves remains constant. In a repeated measures 

ANOVA for first-deviant data with within-subjects factors of period (early, late) and 

half (first, second) these visible patterns produce main effects of period only (F 

(1,15) = 23.04, p<.001, η2= .61). In Figure 2.5C the MMN to the second-deviant 

does not drop over early and late sequence blocks and appears to exhibit the same 

significantly smaller amplitude MMN for first-half of each block confirmed in a 

main effect of half only (F (1,15) = 17.18, p<.001, η2= .53) in the corresponding 

repeated measures ANOVA.  
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Figure 2.5. MMN waveforms in period analysis. A. Difference waveforms for the first and second-deviant in the 
1st half (black solid lines) and 2nd half of stable sequence blocks (grey broken lines) averaged over the four 
sequence presentations. B. Same as A but for the first-deviant tone only and with the response in early and late 
blocks separated.  The top portion shows the difference waves and the bottom the deviant and standard ERPSs.C. 
Same as B but for the second-deviant tone only.   

 

2.7 Discussion. 

In study 2, we used a between-subjects design to examine how the order-

driven bias in MMN amplitude was affected by repeated exposure to stable or 

unstable sequences across time. The data reveal a remarkably persistent pattern of 

differential effects on MMN amplitude for the first and second-deviant. The deviant 

by half interaction is consistent with the pattern seen for stable sequences in study 1; 

similar to study 1, this difference is due to MMN amplitude being “suppressed” in 
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the first-half of blocks for the second-deviant but not for the first, and this remains 

constant over sequence repeats. In contrast, the MMN to the first-deviant is not 

significantly smaller in the first-half of blocks. So, the data across presentations are 

very consistent for the stable sequence and show that repeated exposure does not 

alter the different stability effects on MMN for the first and second-deviant tone.  

The discussion for study 1 raised the possibility that the long period of 

repetition at the end of a stable sequence could cause a strong adaptation that might 

impact the response to tones in the following sequence. This was proposed as a 

possible explanation for why the pattern of stability effects reversed in the unstable 

sequence when it followed the stable sequence. Observations from study 2 provide 

compelling evidence that this is highly unlikely. If adaptation to standards in the 

final block of stable sequences impacted MMN to the first-deviant in the next 

sequence, this would act to “suppress” MMN amplitude to the first-deviant tones 

when the stable sequence is repeated. It is clear from Figures 2.4 & 2.5 that this is 

not the case; MMN to the first-deviant is always large (Figure 2.4) and is actually 

largest in the early blocks of the repeating stable sequences (Figure 2.5). However, 

contrary to study 1, the deviant by half interaction in unstable sequences in study 2 

was not significantly different to that in stable sequences (i.e., the deviant by half 

interaction was not modified by condition). The repeats of the unstable sequence do 

not replicate the modulation patterns seen in study 1 (i.e., small MMN in the first-

half of blocks for the first but not the second-deviant). The effects on MMN 

amplitude in the unstable group in study 2 do not differ statistically from those in the 

stable repeat condition. It is also clear however, that the effects in the unstable group 

are much smaller and indeed, if analysed without the stable sequence group, produce 

a main effect of half only (second-half larger than first). This observation is 
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consistent with the proposition that the patterns in the unstable sequence in study 1 

were due to the sequence being preceded by the stable sequence. When encountered 

in isolation (study 2), the unstable sequences produce minimal evidence of (or 

possible absence of) order-bias, which may reflect theory that any top-down 

influence on MMN amplitude will be less pronounced under conditions of low-

confidence in the underlying model (Friston, 2005; Garrido et al., 2009; Lieder et al., 

2013; Winkler, 2007). In the absence of any top-down bias, the results may be 

dominated by more local adaptation effects proposed by Costa-Faidella et al. (2011) 

where, with so many reversals, the adaptation effect on both tones as standards could 

begin to suppress the initial MMNs to the same tones as deviants leading to smaller 

MMNs in first-half data for both deviants.   

 

2.8 General Discussion & Conclusions 

The studies presented in this paper demonstrate robust order-effects on 

modulation of MMN amplitude revealed in role-alternating sequence designs. If the 

system were realistically computing probabilities from tone occurrences, the patterns 

of change in MMN for both deviants should be equivalent. Instead, the evidence 

pertaining to the two tones and/or block types appears to be weighted differently. 

Although long time-scale adaptation could contribute to these order-effects (Costa‐

Faidella et al., 2011), it cannot account for why such effects can be altered by 

changing the behavioural relevance of the sounds (Mullens et al., 2014) and it does 

not appear to account for why the order-effects reverse if an unstable rapid role 

alternating sequence follows a stable slow role alternating sequence (study 1 and 

Todd et al., 2013).  
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It was hypothesised that repeated exposure to sequences (study 2) could 

result in diminishing bias as the auditory network learns over time that tones and 

block-types are equally probable. Instead, the pattern of bias remained. This suggests 

that the learning that generates the bias is stable or may even be reinforced with 

repeated exposure to sequences with the same initial structure (see Todd et al., 2013a 

for reversal of bias with reversal of deviant order).  

We have elsewhere suggested (Todd et al., 2013a) that the “first-impression” 

bias we expand on in this paper is akin to the formation of an instantaneous prior 

with a lasting impact that is reactivated each time the roles reverse. MMN has 

generally been considered to reflect a very low-level relevance filtering system, 

however this is challenged by the observation that these apparent instantaneous 

priors (biases) can have profound affects that are altered by previous experience with 

sound. As reviewed in the introduction, Mullens et al. (2014) showed that the 

appearance of the bias was a function of the behavioural relevance of sounds in a 

previous go-no-go task. The results suggest that the MMN prediction-error signal 

can reflect an integration of sound meaning or relevance with sound probability 

information (e.g. first-deviant is rare and potentially important; first standard is 

predicted and provides no new information). The observation that previous 

familiarity can affect MMN amplitude is also evident in studies showing larger 

MMN to recognised language (Jacobsen et al., 2004; Pulvermüller & Shtyrov, 2006) 

and non-linguistic stimuli (Jacobsen, Schröger, Winkler, & Horváth., 2005) than 

those with equivalent physical distinctiveness.  Our observations indicate that these 

effects may not be solely related to familiarity but instead to what participants have 

to do in response to the sound (i.e., sound relevance). These propositions require 

additional investigation but invite the intriguing possibility that applications of 



CHAPTER 2: SEQUENTIAL EFFECTS ON MMN 

113 
 

MMN can be used to study how priors interact with evidence to influence predictive 

processes that filter relevance in the unattended auditory environment.   

Although order biases have emerged in (and could be confined to) studies 

employing role-reversing paradigms, what the data clearly reveal is that we do not 

yet understand all of the factors that significantly impact MMN amplitude. It is 

therefore imperative that continued efforts are made to explore such phenomena, 

particularly those that challenge current assumptions about the conditions in which 

smaller MMN is observed. Certainly, current models of the inferential process 

appear incomplete because they would not predict the present data. Studies using the 

multi-timescale paradigm have shown very long lasting cumulative effects of 

learning that appear to distort confidence in automatic perceptual inferences. A 

deeper understanding of how this learning impacts MMN amplitude in healthy 

populations will ultimately advance our understanding of the many ways in which 

the system underlying sensory predictions and MMN amplitude can be impaired in a 

variety of clinical groups including those with schizophrenia. Furthermore, 

paradigms that can dissociate adaptation effects on ERPs from those that might be 

attributed to active prediction-models can contribute to identifying the contribution 

of each of these elements to smaller MMN in clinical populations.  
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Study Motivation 

This chapter is the outcome of multiple revisions following three rounds of peer 

reviews. The purpose of our research study and associated rationale has remained 

consistent throughout each version that is, we wanted to examine whether first 

impression bias is altered under conditions that place increased demand on cognitive 

resources. In the first version, one group of participants completed a concurrent 2-

back WM task whilst hearing the multi-timescale paradigm revealing basic stability 

effects on MMN. Reviewers recommended we add a comparison group who 

completed a simple perceptual task to control for attentional influences and validate 

our conclusion that contributions from cognitive brain areas are likely involved in 

learning biases on longer time-scales. We complied with this request and found basic 

stability effects on MMN irrespective of task type. In a second submission, we were 
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advised to add another control group of participants who heard the multi-timescale 

sequence under typical low-demand conditions (i.e. whilst watching a DVD). We 

followed this recommendation and found that each task type differed significantly 

relative to the low-demand condition with differences most pronounced between the 

low-demand and WM conditions. Upon our third submission, the paper was rejected 

because “The discussion shows that there are too many buts to prevent a clear 

straightforward conclusion”. We have since asked two independent researchers with 

almost 50 years of experience in MMN research combined to provide an opinion on 

the prepared manuscript – both agree that our interpretations of these data are 

conclusive. Although the data remain unpublished, we have presented these studies 

in line with our original interpretation. 
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3.1. Introduction 

First impressions are thought to occur when the first instance encountered is 

allocated greater weight relative to later experience (Birnbaum, 1974; Tetlock, 

1983). These impressions typically persist despite evidence to the contrary 

(Baumeister et al., 2001; Nisbett & Ross, 1980; Rothbart & Park, 1986; Rozin & 

Royzman, 2001). A wide range of studies including those in learning  (e.g. Jacoby, 

Wahlheim, Rhodes, Daniels, & Rogers, 2010; Shteingart, Neiman, & Loewenstein, 

2013), resistance to stereotypes and attitude to change (e.g. Allport, 1979; Bargh & 

Pietromonaco, 1982; Devine, 1989; Hamilton, 1979; Pratto & Bargh, 1991; Wyer, 

1973) as well as judgement and decision-making (Carney & Banaji, 2012; Collins & 

Shanks, 2002; Dennis & Ahn, 2001; Hertwig, Barron, Weber, & Erev, 2004; 

Hogarth & Einhorn, 1992; Mantonakis, Rodero, Lesschaeve, & Hastie, 2009) have 

been used to demonstrate how order-effects impact on information acquisition across 

time. These forms of first impression bias are inferred from patterns of information 

recall or are otherwise exposed in overt behaviour. However, there is evidence that 

first impression bias can be observed in neural activity that reflects automatic 

relevance filtering processes in the brain, a much earlier stage of information 

processing compared to the previous examples (e.g. Frost et al., 2016; Todd et al., 

2011; Todd et al., 2014a). In the present study, we test the hypothesis that the 

formation and/or maintenance of this bias depends on access to cognitive resources, 

and therefore would be altered if participants were engaged in a concurrent 

cognitively demanding task.  

The first impression bias to which we refer has been exposed in participants 

passively listening to sound sequence compositions. Using evoked potentials, we 

have demonstrated that the amplitude of the response to rare pattern deviations is 
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impacted by the way the sequence begins (Fitzgerald et al., 2017; Frost et al., 2016; 

Mullens et al., 2014; Mullens et al., 2016; Todd et al., 2011; Todd et al., 2013; Todd 

et al., 2017; Todd et al., 2014a; Todd et al., 2014b). The bias is indexed using the 

amplitude of the mismatch negativity (MMN) component of the auditory event-

related potential (ERP). MMN is a negative deflection typically observed at fronto-

central scalp sites 100-250 ms following the presentation of a sound that violates a 

learned regularity (Näätänen et al., 1978; see Näätänen et al., 2011, for review). 

MMN parameters (amplitude, latency, etc.) are calculated from a difference 

waveform by subtracting ERPs to pattern-conforming sounds (hereafter referred to 

as standards) from those elicited to pattern-violating sounds (hereafter referred to as 

deviants). Sound information associated with MMN pattern violation detection is 

said to be represented in the brain by an internal prediction model outlining the 

likelihood of encountering a sound that conforms to a regular repeating pattern 

established in the present context (Winkler et al., 1996; Winkler, 2007). In this 

regard, MMN can be considered a prediction error signal because it is observed 

when a mismatch between predictions outlined in model content and actual input 

occurs (Friston, 2005).  

MMN amplitude increases with increasing temporal stability of pattern 

repetition within a sequence and this reflects accumulated “confidence” in the 

underlying internal model (Winkler, 2007; Winkler & Schröger, 2015). Confidence 

is used to ‘weight’ or rank the probability for one prediction model to explain a 

future sound source over another (Winkler, 2007; Winkler & Schröger, 2015). While 

exposure to a rare model violation always elicits MMN, the system is highly 

dynamic and repetitions of this same sound will stimulate new learning as indexed 

by progressively smaller ERPs with each repeat (Winkler et al., 1996; Sams et al., 
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1993; see extension to temporal patterns in Barascud, Pearce, Griffiths, Friston & 

Chait, 2016). These observations have been interpreted as evidence that learning 

based on local sound probabilities (i.e. in a single short oddball sequence) rapidly 

updates internal models to better anticipate future sound experience.  

The first impression bias refers to the observation that new learning based on 

sound transition statistics does not always unfold in a uniform manner as one might 

predict based on local statistics. Instead, it appears that initial learning has a 

disproportionate influence over subsequent sound responses in a way that is 

consistent with predictions based on shorter timescales being constrained by 

assumptions about how stable sound statistics should be in the current environment 

(Frost et al., 2016; Todd et al., 2011; Todd et al., 2013; Todd et al., 2017; Todd et 

al., 2014a; Todd et al., 2014b; Mullens et al., 2014; Mullens et al., 2016).  

The bias has been observed in participants presented with a sound sequence 

containing regular patterning on multiple timescales (coined the multi-timescale 

paradigm; Todd et al., 2011). Sequences comprise two different sounds that are 

organised into two block-contexts (an example is available in Figure 3.1 in 

Methods). In one block-context, one sound is a highly probable standard and the 

other a rare deviant (hereafter referred to as first deviant). In the other block-context, 

sound probabilities switch such that the once rare sound is now probable and the 

once probable sound is now rare in this new context (hereafter referred to as second 

deviant). In both cases, the rare deviant sounds elicit MMN. The sequences comprise 

multiple blocks that alternate between these two states, and the block length varies 

between either shorter or longer durations across two different sequence types, 

respectively (Todd et al., 2011). This means that patterns can emerge on a dynamic 

local timescale when a standard is heard repeatedly within each block-context but 
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also on a slower timescale when the block-context reliably switches after exposure to 

the entire stable sequence typically heard first. In the stable sequence, MMN 

amplitude to first deviants has equivalent amplitude throughout the early and later 

portions of the block-contexts, while that to the second-deviant begins smaller at the 

beginning of the block-context and increases over time. This differential pattern of 

change in MMN amplitude over time has been observed to completely reverse in a 

subsequent sequence comprising 12 block alternations of shorter length (0.8 min, 

Todd et al, 2014a).  

To explain why these order effects might occur, Todd et al. (2014a) draw 

upon contemporary models of predictive coding (Friston, 2005; Lieder, Stephan, 

Daunizeau, Garrido, & Friston, 2013). The explanation relies on two key elements: 

the existence of hierarchical inference (learning over multiple timescales), and the 

influence of higher-level predictions over learning-rates at lower levels. Todd et al. 

(2014a) propose that the brain can learn about both the local sound patterning (recent 

sound probabilities), and the super-ordinate pattern (the rate of block-context 

alternations) by accumulating predictions based on regularities present on different 

timescales. Such ideas have been formalised in Hierarchical Gaussian Filtering 

(HGF) models of learning under uncertainty. In these models, it is posited that over 

time the brain can learn not only about local transition contingencies, but also the 

tendencies in those transition contingencies and furthermore, the likelihood that 

transition contingencies will change (Mathys, Daunizeau, Friston, & Stephan, 2011; 

Mathys et al., 2014). The rate of model updating following a prediction error will 

depend on confidence in predictions (or Bayesian precision) at a given level and the 

level above. This formulation would stipulate for the multi-timescale paradigm that 

model updating in the presence of an unexpected event (a deviant tone), will 
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ultimately be constrained by the modelled likelihood that transition statistics (i.e. 

tone roles) will change.   

Thus, the following explanation of the first impression bias effects on MMN 

can be proposed: Participants rapidly accumulate high confidence in the model 

formed at sequence onset (first block-context), and because this is highly stable, they 

also form a higher-order belief that transition statistics are unlikely to change 

(Mullens et al. 2016). Model updating and therefore, the rate of learning about 

transition statistics in the new context is slower because the associated network 

requires time to overcome this higher-order belief. Over time, confidence in the new 

context accumulates and MMN amplitude to the second deviant increases. Although 

these differential patterns may diminish slightly in the second encounter of each 

block, data suggests the different levels of confidence are reactivated in later 

encounters (Frost et al, 2016).  

Mullens et al. (2016) further tested the assumption described above (Todd et 

al., 2014a) that cumulative learning over a longer time course enables predictions for 

longer term regularities in the sequence: i.e., the system should be able to learn that 

the two different contexts always alternate, and even learn the rate at which they 

alternate (the block lengths). If this was the case, the system would be ‘surprised’ if a 

block-context changed earlier or later than expected, thus creating a type of second-

order prediction error. When the first-context block ended sooner than predicted in 

the unstable sequence heard during the second half of the experiment, confidence 

associated with this context appeared to drop as was attested by the finding that 

MMN amplitude increased more slowly in this case compared to the reversed 

(second-deviant) context (Mullens et al., 2016). This interpretation was further 

supported by the observation that the same reversal in MMN amplitude 
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accumulation also occurs in the stable sequence immediately after the twelve-block 

unstable sequence (i.e., as the first block of the stable sequence violates predictions 

by changing later than anticipated compared to the preceding unstable sequence). In 

summary, these distortions of development of the MMN amplitude over time appear 

to depend on both the tone roles at sequence onset and the large-scale structure of the 

overall sequence.  

The mechanisms of learning proposed to explain the first impression bias 

require learning of sound structures that emerge over longer timescales (Todd et al., 

2014a). Kiebel, Daunizeau and Friston (2008) posit that regularity extraction over 

different timescales is processed in a rostral-caudal fashion. The PFC is proposed to 

be involved in encoding the temporally more stable contexts relative to primary 

sensory areas that are sensitive to rapidly changing transition statistics. This is 

consistent with data generated in both electrophysiological and neuroimaging studies 

showing that changes in cortical responsiveness to sound is the result of neural 

dynamics operating within a temporo-frontal network (Doeller et al., 2003; Giard et 

al., 1990; Opitz et al., 2002; Rinne et al., 2000). The MMN response receives 

contributions from both the auditory and the frontal cortex (Alho, 1995; Alho, 

Woods, Algazi, Knight, & Näätänen, 1994; Baldeweg et al., 1999; Escera et al., 

2003; Giard et al., 1990; Näätänen, et al., 1978; Rinne et al. 2000). There is evidence 

to suggest that the temporal component is activated before the frontal, forging the 

possibility that the latter is involved in additional processing following sound change 

(Rinne et al. 2000). Others report that frontal MMN generators facilitate automatic 

allocation of attentional resources to deviations from the detected regular sound 

patterning (Escera et al., 2003). Taken together, these findings indicate that the PFC 

is likely involved in forming predictions about the potential relevance of incoming 
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sound input over longer timescales (Kiebel et al., 2008) and/or fine-tuning the 

distribution of attentional resources to better prepare the network for impending 

sound change (Opitz et al., 2002). 

Although previous studies show that the formation of predictive models 

based on short-timescale regularities is generally not dependent on attentional 

capacities (for a detailed discussion, see Sussman, 2007), predictions based on 

information gleaned over longer time periods might be. In line with early 

propositions (Desimone, 1996; Maunsell & Treue, 2006), it has more recently been 

shown that mechanisms of attention are involved in enhancing prediction error 

signalling during statistical pattern learning in an environment characterised by 

constant noise and uncertainty (Feldman & Friston, 2010). To date, the multi-

timescale paradigm has only been studied when participants hear the sound 

sequences whilst engaged in a simple task (i.e. watching a DVD with subtitles) that 

placed relatively low demand on perceptual and cognitive resources. It is not known 

whether first impression bias in sound information-processing is observed when task 

demand is increased, therefore reducing access to resources presumably required for 

sequence learning on multiple timescales.  

The aim of the present study was to determine whether first impression bias 

is dependent on the availability of cognitive resources. Performance on tasks reliant 

on sustained attention and/or working memory is known to depend on frontal brain 

areas (Buschman & Miller, 2007; Corbetta & Shulman, 2002; Courtney, Petit, 

Haxby, & Ungerleider, 1998; Courtney, Petit, Maisog, & Ungerleider, 1998; Fritz, 

David, Radtke-Schuller, Yin, & Shamma, 2010; Fuster, 1988; Owen, McMillan, 

Laird, & Bullmore, 2005; Stuss & Benson, 1984). To test this, we compared MMN 

amplitude modulation in three separate groups: those who heard the multi-timescale 
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paradigm while (1) watching a DVD with subtitles (low cognitive demand DVD 

condition); (2) performing a visual 2-back working memory task (high cognitive 

demand working memory [WM] condition); or (3) performing an attention-

demanding visual inspection time task (high cognitive demand perceptual task [PT] 

condition). The latter group were included as a means for testing whether first 

impression bias would be differentially affected by a task that required attention but 

not WM per se as in the WM condition, compared with a relatively low demand 

condition. The DVD group reflected typical experimental conditions under which 

learning biases reliably emerge and was included as a crucial control condition 

against which the demanding task groups were compared. If first impression bias 

patterns revealed in MMN amplitude depend on attentional and/or cognitive 

resources, we expect that participants performing concurrent demanding cognitive 

tasks would show reduced or absent first impression bias. 

 

3.2 Method 

3.2.1 Participants. Participants were 46 healthy community volunteers and 

undergraduate students from the University of Newcastle, Australia aged 18-34 

years. Participants formed three groups, distinguished by the task condition: the 

DVD condition (n = 14, 7 female, M = 25 years) the WM condition (n = 17, 10 

female, M = 22 years) and the PT condition (n = 15, 11 female, M = 26 years). 

Groups were tested at separate times within the same laboratory. The data from the 

DVD condition is a subset of data published previously (Todd et al., 2013, Order 2) 

and is included here for comparison purposes. Recruitment methods and age range of 

participants was similar across conditions. Volunteers were included if they were 

between the ages of 18 and 35 years, had normal hearing and were naïve to multi-
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timescale sequence exposure. Those meeting these criteria were excluded only if 

they had a history of head injury, neurological condition, family history of psychosis, 

or they were currently being treated for mental illness or engaged in alcohol or 

substance abuse. Remuneration was offered as course credit to students and gift 

voucher to community volunteers. Written informed consent was obtained from all 

participants consistent with standards approved by the Human Research Ethics 

Committee.  

3.2.2 Stimuli and Sequences. Figure 3.1 features a schematic illustration of the 

sound sequences used in this study. Sequences were made up of sound blocks that 

presented either long-deviant or short-deviant tones. In blocks with long-deviants, 30 

ms tones were highly probable standards (p = .875) and 60 ms tones were rare 

deviants (p = .125). In blocks with short-deviants, the probabilities of the two tones 

were reversed (30 ms as deviant and 60 ms as standard presented at p = .875 and 

.125, respectively). Blocks were organised into two sequence types. In the stable 

sequences, sounds were arranged in four blocks with block-type alternating after 

every 480 tones producing a stable-standard period of 2.4 min. In the unstable 

sequence, sounds were arranged in twelve blocks with block-type alternating every 

160 tones creating a stable-standard period of 0.8 min. Overall tone probability 

(1920 tones in total, 960 of each duration) and sequence length (9.6 min) were 

identical across the stable and the unstable sequence. Experimental conditions were 

equivocal irrespective of task demand conditions that is all participants heard stable 

followed by unstable sound sequences separated by a 40s period of silence and the 

longer sound was always heard as the first deviant. 
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Figure 3.1. Multi-timescale sound sequences and the block halves analysis a. Lined rectangles represent long 
(first) deviant block-contexts; solid rectangles short (second) deviant block-contexts. b. Sections labelled 1(1st 
half data) and 2 (2nd half data) show how blocks were divided for halves-analysis as detailed in Todd et al. 
(2014a).  
 

 

All tones were 1000 Hz pure tones presented at 75 dB SPL with 5 ms rise/fall 

times and either a 20 ms or 50 ms pedestal to produce 30 ms and 60 ms sounds, 

respectively. All sounds were presented binaurally over headphones (Sennheiser  

HD280pro). Tones were presented at a regular 300 ms stimulus onset-to-onset 

interval. 

3.2.3 Concurrent Task. For all groups, stimuli for the concurrent task were 

presented on a video monitor (60cm x 34cm) at a viewing distance of approximately 

150cm. The concurrent task was always initiated 1 minute before the onset of the 

auditory stimulation. In the DVD condition, participants viewed a silent movie with 

subtitles (Todd et al., 2013). Participants in the WM condition were asked to monitor 

the identity of a series of visual stimuli (a letter of the English alphabet) and respond 

(by way of button-press) only when the current stimulus was the same as that 

presented two trials before. For this visual version of the 2-back WM task (Owen et 

al., 2005), we used 13 uppercase letters (S, W, P, V, D, B, R, X, E, C, J, K & L) 

subtending a vertical visual angle of 1.0° and a horizontal visual angle of 1.2°. The 

letters were white in colour and presented at the centre of a black screen. A white 

fixation cross (vertical and horizontal visual angles of 5° and 4°, respectively) was 

presented at the centre of the screen between successive letters. Letters were 

presented for 500 ms at an average stimulus onset-to-onset interval of 2 s with onsets 
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falling between 1.5 - 2.5 s on any given trial (uniform distribution). Each 

experimental session consisted of 10 practice trials followed by two test blocks 

separated by a 40 s break. Before testing commenced, a researcher first provided 

scripted instructions of the 2-back WM task to each participant. The onset of the task 

preceded the tones by one second and ran for the full duration of the auditory 

sequence resulting in the presentation of 158–160 targets (2-back matches) and 408–

423 non-targets (2-back mismatches). Task performance (correct and incorrect trials 

and misses) for both practice and testing sessions was recorded for each participant. 

The visual 2-back task requires participants to constantly update information 

stored in WM to include new information about the most recently presented stimulus 

while at the same time, ignoring temporally irrelevant stimuli (Owen et al., 2005). 

This task has been found to robustly activate dorsolateral PFC regions associated 

with higher-level cognitive processes (Owen et al., 2005) and has no significant 

impact on MMN amplitude to deviations from simple regularities (e.g., the auditory 

oddball paradigm with no dynamic changes in the make-up of the sequence; see e.g., 

Winkler et al., 2003).  

The remainder of participants performed a vertical line PT task in which they 

had to decide whether the left or right line within a visual stimulus was longer. In 

this task, a centrally positioned fixation cue (a small white plus [+] sign measuring 

6.6 mm with vertical and horizontal visual angles of 5° and 4°, respectively) 

preceded all trials. A trial commenced when this cue was replaced by a stimulus 

figure consisting of two vertical lines (one 15 mm other 30 mm long) subtending a 

visual angle of 0.6° and 1.2°, respectively, joined at the top by a horizontal line of 

approximately 18 mm subtending a visual angle of 1.1°. A flash mask immediately 

replaced this figure after a visual inspection time of 150 ms, and consisted of two 
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vertical lines 35 mm in length, shaped as lightning bolts. The mask was presented for 

375 ms. Duration of exposure was not varied as a function of performance to control 

for task difficulty. On each trial, the participant was required to indicate which line 

was longer by pressing a left or right button on a game console response pad (equal 

probability across trials). Participants were told to emphasise accuracy and speed 

when responding. A stimulus to stimulus trial time of 1250 ms was used for both 

practice and test trials. PT is demanding on sustained attention with performance 

reliant on lateral and medial frontal brain areas recruited by the demand of 

attempting to process a visually degraded percept in addition to a fronto-posterior 

network that includes sensory areas (Deary et al., 2004).  

3.2.4 Procedure. A screening interview was conducted prior to testing to ensure that 

all participants met inclusion criteria. Next, a pure tone audiometer (Earscan ES3S) 

was used to assess individual hearing thresholds (≤ 25 dB SPL separately for each 

ear) across 500-4000 Hz and exclude participants for hearing loss. Participants were 

fitted with a Neuroscan Quik-Cap hosting tin electrodes. Continuous EEG was 

recorded using a Synamps 2 Neuroscan system at 1000 Hz sampling rate (high-pass 

0.1Hz, low-pass 70 Hz, notch filter 50 Hz and a fixed gain of 2010). The EEG data 

were collected from 32 electrode locations (Fz, FCz, Cz, CPz, Pz, Oz, FP1, F3, FC3, 

C3, CP3, P3, O1, FP2, F4, FC4, C4, CP4, P4, O2, F7, FT7, T7, TP7, P7, F8, FT8, 

T8, TP8 & P8 in accordance with the 10-20 system, plus bilateral mastoids) and 

referenced to the nose tip. Vertical and horizontal electro-oculogram were also 

recorded using electrodes placed above and below the left eye, and 1 cm lateral to 

the outer canthi of both eyes to monitor eye blinks and movement. Electrode 

impedances were accepted below 5 kΩ. Once a cap was fitted, a researcher provided 

participants with both verbal and written instructions for completing the session. 
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Irrespective of group (DVD, WM, PT), all participants were asked to focus on the 

instructed task and ignore the sound sequence heard. 

For the WM and PT tasks, responses provided during practice sessions were 

closely monitored and the practice block was repeated if performance was low to 

maximise engagement during testing. Once participants successfully completed the 

practice session (response accuracy > 90%), testing commenced and sound 

sequences were presented over headphones while the participant concurrently 

completed the task. Participants in the WM and PT groups then completed a two-

item post-test questionnaire designed to capture feedback regarding awareness of 

sound sequence structure. The first item, “Were you aware of any patterning in the 

sound sequences?”, was formatted as a yes-no question. The second question 

enquired, “If YES, please briefly describe what you noticed about the sounds”. The 

questionnaire took approximately 5 min to complete. Data regarding sequence 

awareness were not obtained for the DVD group. 

3.2.5 Data Analysis. Participant performance for the WM task was measured to 

ensure that all participants were engaged in the task and was quantified using 

standard signal detection measures including hit-rate (correct 2-back target) and 

false-alarm rate (target stimulus response to non-target stimulus) percentages. For PT 

data, line length discrimination performance was measured by examining the 

percentage of correct responses and errors (including both commission and omission 

types). The response to the sequence awareness question was coded (0 – not aware, 1 

– aware) to calculate percentage of yes/no responses.  

For all groups, continuous EEG recording was examined offline to correct for 

major artefact and eye blinks using procedures in Neuroscan (4.5) Edit Software: 

regression analysis in addition to artefact averaging was applied (Semlich, Anderer, 
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Schuster, & Presslich, 1986). The average eyeblink artefact response algorithm was 

assessed for suitability (> 30 samples with < 5% variance in samples contributing to 

the average) and applied to the continuous data set to maximise data quality and 

remove unwanted noise. Each data set was epoched from 50 ms pre-stimulus to 300 

ms post-stimulus. Epochs with a voltage change that exceeded ± 70 µV were 

excluded. Separate averages were created for responses to the standard and deviant 

tones for the early (first-half) and later (second-half) portions of the stable and 

unstable sequences in line with the methods previously established in our group 

(Todd et al., 2014a). The first five standards in a block and the first standard after 

each deviant were excluded from averages to control for ERPs affected by a recent 

stimulus change (Sams et al., 1983). The practice of combining data from the first 

half versus second half of a block is used to emphasise differences in MMN 

amplitude at transition points (i.e. period after block-contexts/tone roles alternate) 

compared to later periods when the roles have been stable for some time, 

respectively. From this follows that a maximum of 60 epochs are included in an 

average deviant-stimulus response. In the present study, the minimum number of 

epochs contributing to an average for any participant was 45 with the mean between 

55 and 58 for all deviant waveforms. Average ERPs were digitally filtered with a 30 

Hz low-pass filter to exclude high frequency noise.   

Difference waveforms were created by subtracting the ERP to a sound when 

presented as a standard from the ERP to that same sound when presented as a 

deviant in the corresponding sequence, block, and half. Quantification of MMN 

amplitude was achieved by extracting the mean peak amplitude over a 20 ms period 

centred on the most negative point in the difference waveform within the 150-250 

ms post-stimulus interval. This facilitated a reliable measure for capturing the peak 
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amplitude (Kujala et al., 2007). Right frontal (F4) MMN measures were compared in 

a mixed model ANOVA with sequence (stable, unstable), deviant (first deviant, 

second deviant) and half (first half, second half) as within-subject variables and 

condition (DVD group, WM group, PT group,) as a between-subject variable. The 

alpha level was set at .05; ƞ2 effect sizes are shown. All significant main effects and 

interactions are described.  

3.3 Results 

3.3.1 WM and PT Task Performance. Mean hit- and false-alarm rates for the 2-

back task were 76.5% (range: 41-92%) and 3% (range: 1-7%), respectively. Two 

participants maintained relatively low hit-rate scores (41% and 47%) but were not 

excluded due to low false-alarm rates indicating that neither person was responding 

in a random fashion. All other participants demonstrated high hit-rates and low false-

alarm rates. In the PT task, the mean hit rate was 90.7% (range: 76-98%) and the 

error rate 6.5% (range: 1-14%). Taken together, assessment of task performance 

indicated that all participants were sufficiently engaged in the instructed task.     

3.3.2 Mismatch Negativity. The deviant minus standard difference waveforms for 

the DVD, WM and PT group are presented in Figures 3.2. The omnibus mixed 

model ANOVA produced main effects of sequence (stable > unstable, F (1, 43) = 

31.52, p < .001 ƞ2 = .42), block half (second half > first half, F (1, 43) = 39.49, p < 

.001 ƞ2 = .48), deviant (first > second, F (1, 43) = 12.25, p < .01 ƞ2 = .22) and group 

(DVD < WM, PT, F (1, 43) = 4.43, p < .05, ƞ2 = .17). However, these main effects 

were subject to modification by a significant group x sequence x half x tone 

interaction (F (2, 43) = 3.70, p < .05, ƞ2 = .15). Additional analyses were therefore 

conducted to explore precisely how MMN amplitude patterns differed between 

groups. 
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Figure 3.2. MMN difference waveforms separated by task demand. A. DVD group (undemanding conditions), B. 
WM group, and C. PT group for the first (60ms; left within panel), and second (30ms; right within panel) 
deviants for the stable (top left panel) and unstable (top right panel) sound sequences. The MMN waveforms for 
data obtained in the 1st half (solid lines) and 2nd half (broken lines) of the sound blocks are over-plotted.  
 

The DVD group displays the MMN modulation patterns typical of the first 

impression bias. Although there is a main effect of half overall (second half > first 

half, F (1, 13) = 6.02, p < .05, ƞ2 = .32), this is modified by a significant sequence x 
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deviant x half interaction (F (1, 13) = 7.75, p < .05, ƞ2 = .37). In the stable sequence, 

the deviant MMN was modulated differently by half for the two deviants (F (1, 13) = 

4.72, p < .05, ƞ2 = .27) – increasing over time for the second deviant (t13= 3.03, 

p<.05) but not for the first. In the unstable sequence, the opposite trend was present  

(F (1, 13) = 3.84, p = .07, ƞ2 = .23) with MMN increasing over time for the first 

deviant (t13= 3.11, p<.05) but not the second.  

These MMN modulation patterns tended to differ from those in both the WM 

and PT groups with the sequence x deviant x half interaction significantly modified 

by group in the DVD/WM comparison (F (1, 29) = 7.63, p < .01, ƞ2 = .21) and 

marginally in the DVD/PT comparison (F (1, 27) = 3.57, p = .07, ƞ2 = .12). The 

pattern of MMN modulation did not however differ between the WM and PT groups. 

Visual inspection of Figures 3.3 and 3.4 show that in those performing the WM and 

PT tasks, MMN amplitudes elicited by first and second deviants appeared to increase 

from the first to the second half of the stimulus blocks in both stable and unstable 

sequences. This was confirmed when these two groups were compared in a mixed 

model ANOVA with the analysis producing a significant effect of sequence (stable > 

unstable, F (1, 29) = 16.30, p < .001, ƞ2 = .36) half (second half > first half, F (1, 29) 

= 16.34, p < .001, ƞ2 = .36) and deviant (first deviant > second deviant, F (1, 29) = 

6.08, p < .05, ƞ2 = .17) but no significant interactions. MMN amplitude increased 

with increasing stability, both in terms of a stable > unstable and second half > first 

half MMN amplitude. For completeness, we note that the main effects of sequence, 

half, and deviant were significant within both the WM (F (1, 16) = 26.62, p < .001, 

ƞ2 = .63; F (1, 16) = 11.12, p < .01, ƞ2 = .41; F (1, 16) = 14.14, p < .01, ƞ2 = .47, 

respectively) and the PT group (F (1, 14) = 16.32, p < .01, ƞ2 = .54; F (1, 14) = 

26.02, p < .001, ƞ2 = .65; F (1, 14) = 7.52, p < .05, ƞ2 = .35, respectively) with no 
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significant interactions present in either group. Separate analyses of the standard and 

deviant responses revealed that amplitude effects in the MMN difference waveform 

were reliant on responses to deviants only (see Appendix 3). 

3.3.2 Participant Awareness. In the WM condition, all but three participants 

reported that they were aware of sound patterning. However, they were not fully able 

to articulate exactly what type of sound patterning they heard. Of the 14 participants 

who reported sequence awareness, 12 did not provide a description of what they 

heard. One person provided a description that indicated some awareness of 

patterning stating, “The sounds had a pattern of low frequency clicks followed by 

high frequency beep. Sometimes it would switch with high frequency beeps followed 

by one low frequency beep”. Similar reports were made by those who completed the 

PT task. There were eight out of 15 participants who indicated they were aware of 

sound patterning though did not fully describe actual sequence structure in detail 

(e.g. “Long sounds and short sounds”, “Rapid paced quick sounds with a short 

interval between each”). 

3.4. Discussion 

The first impression bias observed under passive listening conditions was 

absent in those who performed either a WM or a PT task. Groups that performed 

these tasks did not show differential patterns of MMN amplitude to the first and 

second deviant tones in the stable and unstable sound sequences. Instead, MMN to 

both deviants was modulated in the same way, increasing over time with increasing 

period of local pattern stability. That is, MMN showed characteristics of a system 

fully governed by local transitional probabilities (see, e.g., Mittag, Takegata, 

Winkler, 2016). Both the WM and the PT task were similarly effective in cancelling 

out the first impression bias evident in those who simply watched a DVD with 
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subtitles. These data provide compelling evidence that the presence of first 

impression bias is dependent upon some capacities that can be taken away by the 

cognitive demands of a task concurrent to the sound sequences.  Below we discuss 

how concurrent task demand might interact with the mechanisms thought to be 

responsible for the bias. 

Our proposition has been that the bias is reliant on 1) learning the large-scale 

structure of the first encountered sequence and 2) assumptions about its stability. 

These identify two entry points for a concurrent task to interrupt the first impression 

bias. One pathway is through preventing the system from learning the longer-term 

structure of the sound sequences. Indirect support for this pathway comes from a 

recent study in which the four stable sequence blocks and twelve unstable sequence 

blocks used in the current study were presented in a pseudorandom order with no 

fixed large-scale temporal structure (Todd, et al., 2017a). Participants heard this 

sequence under the same conditions as the DVD group did in the current study, and 

yet the data resembled those obtained in the WM and PT groups: i.e., no first 

impression bias while MMN amplitude increased with local stability for both first 

and second deviants (Todd, et al., 2017a). It is therefore possible that whenever there 

is either no higher-order longer-term predictability in the sequence (as in Todd et al., 

2017a), or reduced capacity to learn this structure (as in WM & PT groups in the 

present study), only the local stability affects the MMN amplitude.  

As reviewed in the introduction, the frontal cortices are implicated as being 

essential for an inferential network that allows us to extrapolate patterns occurring 

over longer timeframes (Kiebel et al., 2008). Given the proposed reliance of the bias 

on this longer-term learning, any reduction in access to resources that could support 

this type of learning could explain its disruption. This is in-line with findings 
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showing that MMN amplitude to rare deviants in simple oddball paradigms 

decreases with increasing task demands, particularly if processing resources within 

the same auditory modality (versus visual) are simultaneously allocated to sound 

sequence processing (Dittmann-Balcar et al., 1999). Although the present study does 

not include explicit measures of PFC engagement, prior neuroimaging studies have 

demonstrated WM task performance to be reliant on this region (Buschman & 

Miller, 2007; Corbetta & Shulman, 2002; Courtney, Petit, Haxby, & Ungerleider, 

1998; Courtney, Petit, Maisog, & Ungerleider, 1998; Fritz, David, Radtke-Schuller, 

Yin, & Shamma, 2010; Fuster, 1988; Owen, McMillan, Laird, & Bullmore, 2005; 

Stuss & Benson, 1984). There is also evidence showing engagement of frontal 

cortical areas in participants performing a PT task like the one used in the present 

study (Deary et al., 2004; Waiter et al., 2008; Waiter et al., 2009). Yet, it remains 

unclear as to what extent different MMN generators (e.g. frontal versus temporal) 

contribute to MMN modulation in active stimulus processing of patterning and 

associated violations on shorter and increasing timescales. 

A second possibility is that the commencement of the attention-demanding 

task prior to the onset of sounds dampens or prevents the influence of initial 

sequence structure by strongly directing limited attention resources away from sound 

input. Although the group watching the DVD are instructed to ignore the sounds 

presented, there is no consequence for not filtering the sounds out of the focus of 

attention effectively. In contrast, suboptimal filtering during selective attention to 

visual stimuli appearing for only a short time by the WM and PT group would have 

negatively impacted their task performance. It is therefore possible that access to 

attention resources was more effectively gated in the WM and PT groups, in turn 

altering the encoding of the large-scale sequence structure of the first tone sequence. 
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Access to attention resources was presumably reduced throughout the WM and PT 

tasks relative to the DVD task, consistent with the high level of task performance. 

Within a hierarchical predictive coding system, attention increases the 

precision weighting assigned to models and thus modulate the system’s response to 

both expected and unexpected stimuli (Auksztulewicz & Friston, 2015; Feldman & 

Friston, 2010; Kok & De Lange, 2015; Schröger et al., 2015). If high 

confidence/precision being assigned to the internal model of the first context is a 

critical determinant of first impression bias, its absence in the WM and PT groups 

could reflect reduced access to this source of modulation. This suggestion is 

consistent with the observation that MMN elicited to the first deviant in these groups 

starts at lower amplitude and increases over time rather than assuming its maximal 

amplitude already in the first-half of stable blocks as observed in the DVD group 

both in this study and in previous studies. Attention resources may therefore be 

critical not only to learning at the start of a new context, but also to the maintenance 

of differential precision weightings that contributes to the longevity of the resulting 

bias effect. 

Finally, although we consider it unlikely, the present data do not necessarily 

exclude the possibility that the higher-order structure was learned together with its 

first-encounter based confidence/precision, but that access to attention resources is 

required for MMN amplitude to be affected. The attention-dependent augmentation 

of high-level prediction-errors involves the basal forebrain (Colder, 2015; Doya, 

2002; Iglesias et al, 2013; Sarter, Bruno, & Turchi, 1999; Sarter, Parik, & Howe, 

2009; Yu & Dayan, 2002, 2005). If this mechanism has limited capacity, and this 

capacity is reserved for the primary task, the pathway to express modulation based 

on longer-term pattern extraction may be limited. However, we consider it more 
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likely that the deprivation of attention resources interfered with learning about 

sequence structure generally, leaving only the local deviance sensitivity and stability 

effects intact.  

Two additional observations of the data tangential to primary hypotheses 

should also be discussed.  Firstly, both the WM and PT group produce an overall 

effect of deviant where MMN is larger to the first deviant tone. This order effect is 

of course confounded with tone property as the first deviant was always the longer 

tone. It has previously been shown that larger MMN is elicited by long duration 

deviants compared with short duration deviants (Catts, Shelley, Ward, & Liebert, 

1995; Jaramillo, Alku & Paavilainen, 1999; Jaramillo, Paavilainen & Naatanen, 

2000; Naatanen, Paavilainen & Reinikainen, 1989). Sounds of short duration can be 

subject to loudness summation, which is the tendency for longer sounds to be 

perceived as louder relative to shorter sounds (<150 ms; Scharf, 1978; Zwislocki, 

1969). Further, rare long duration tones have two points of deviance; the point at 

which they exceed the short tone duration (in this case at 30 ms) and the 

accumulated difference at the point at which they cease (in this case 60 ms). It is 

therefore possible that the first deviant MMN is larger overall in these groups 

because of the asymmetry in the changes from short-to-long versus long-to-short 

contexts.  

However, earlier work by our group challenges this interpretation. Mullens et 

al (2014) exposed participants to the same multi-timescale paradigm as that used 

here, but there were three pairs of stable and unstable sequences with the first 

deviant changing from the long tone in the first pair, to the short tone in the second 

pair, and finally back to the long tone in the third pair. Participants completed a task 

with the tones before hearing the multi timescale paradigm under passive listening 
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DVD task conditions. In the task, the short and long tones were presented randomly 

with equal probability. One group were asked to respond with a button press only to 

the short tones (short target group), and the other to the long tones (long target 

group). There was no first impression bias evident in the first sequence pair, but the 

bias appeared in the second pair for the short target group (this pair had the short 

tone as first deviant), and for the third pair for the long target group (this pair had the 

long tone as first deviant). So, the bias eventually returned when the first deviant was 

the target in the prior task. Importantly, when the bias returned, MMN amplitude was 

larger overall to the first deviant tone regardless of whether the tone was short 

(within the short target group) or long (within the long target group). This finding is 

consistent with the notion that the mechanisms of bias interact with perceived 

stimulus relevance in the longer term. If that is the case, it remains possible that the 

first>second deviant MMN in the WM and PT groups reflects the presence of a 

simpler form of order-effect remaining in the data – that is, the perception of 

potentially higher information value for the first deviant tone.  

Finally, the observation that MMN amplitude was overall smaller in the 

DVD group relative to both the WM and PT groups is inconsistent with previous 

studies that have explored the effect of concurrent task as a within-subjects’ 

manipulation (see Wiens, Szychowska, & Nilsson, 2016). MMN amplitudes 

observed in the DVD group are however like those reported in previous published 

studies using the same paradigm (e.g., Mullens et al., 2014, 2016) and we consider it 

likely that these group differences reflect coincidental sampling differences.  

In terms of limitations, it is possible that the sample sizes used in the present study 

are underpowered. Indeed, this may explain why the PT task did not emerge as a 

statistically significant modifier of the sequence by tone by half interaction when 



CHAPTER 3: INCREASED TASK DEMAND ABOLISHES BIAS 

112 
 

comparisons were made with those who watched a DVD only, though a trend in this 

direction was observed. The sample reproduced here from Todd et al.’s (2014a) 

study was specifically selected because the overall participant number is of a 

comparable size relative to both the WM and PT groups thereby mitigating effects of 

inequality of variances associated with unequivocal sample sizes. The sequence by 

deviant by half interaction within the DVD group has a large effect size suggesting 

that the WM and PT groups should have had sufficient power to show the effect if 

the same influences were present. Although this is the first study in which the multi-

timescale paradigm was presented simultaneously with a cognitively demanding 

task, typical patterns of first impression bias have been detected in samples as small 

as 11 (Todd et al., 2013) and were robust when a substantially larger group of 

participants was tested (n = 35; Frost et al., 2016 or see Chapter 2, Study 1). 

Nevertheless, incorporating a larger sample size for each group would likely 

strengthen the present results.  

In summary, the results provide empirical support that first impression bias 

reflects a hierarchical inference process that is no longer observed when access to 

higher-level network resources is compromised by a demanding concurrent task. The 

study employed an experimental manipulation to test the hypothesis that the bias 

would show sensitivity to the availability of cognitive resources. Our hypotheses 

regarding exactly how the bias is impacted by reduced access to brain areas required 

for longer-term learning and/or attention resources remain speculative, and invite 

further exploration using tools that can disentangle the likely mechanisms.  

In conclusion, the present data add to a body of work that indicates that local 

relevance filtering based on dynamic models of statistical input is robust to 

participant engagement in a concurrent cognitively demanding task in the sense that 



CHAPTER 3: INCREASED TASK DEMAND ABOLISHES BIAS 

113 
 

MMN is reliably elicited to sound characteristics that are locally improbable. 

However, MMN amplitude is clearly modulated by influences that appear to reflect 

learning over much longer timescales (Frost et al., 2016; Mullens et al., 2014; 

Mullens et al., 2016; Todd, Provost et al., 2013; Todd et al., 2014a; Todd et al., 

2014b; Todd et al., 2017a, 2017b) that are shown here to be sensitive to 

manipulation of available resources. This conclusion is in line with the currently 

widely accepted views regarding the role of attention in MMN elicitation 

(Auksztulewicz & Friston, 2015; Sussman, 2007). The results also contribute to our 

argument that differential modulation of MMN amplitude seen in the multi-timescale 

paradigm cannot be explained by local effects, such as SSA (for discussion see Frost 

et al., 2016, Mullens et al, 2016, Todd et al., 2017b; also see Chapter 1, 1.3.1 Early 

Accounts of MMN of this thesis). The present study provides additional, albeit 

indirect, support for a network model of the underlying learning system in which 

different timescales of information may be reliant on different levels of a cortical 

hierarchy, and that this learning and implementation is resource intensive. These 

findings also imply that attention-based modulation of MMN may be an important 

driver of the first impression bias effects. 
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Study Motivation 

We hypothesize that learning biases arise because the system relies on a strong first 

impression about tone roles and when these roles will change to evaluate surprise in 

relation to model-based predictions during multi-timescale sequence processing. If 

so, then first informing participants about sequence structures should eliminate the 

surprise generated when these patterns are violated. To test this, we recruited naïve 

participants who had never heard the multi-timescale sequence. Study conditions 

were equal to typical experimental protocols with one important exception. We 

explicitly told participants about the local and superordinate pattern structures before 

presenting sound sequences. Foreknowledge reduced or eliminated surprise about 

when tone roles changed but not when a first-order pattern violation about the 

relative informative value of sound probabilities occurred. Results are interpreted 

with caution due to experimental limitations. Tentatively speaking however, we 

think these data provide yet another striking example of dynamic top-down 

modulation over sound processing by cognitive brain areas that determines how the 

brain accomplishes sound sequence learning over time.  
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4.1. Introduction 

The human brain is remarkably apt at extracting simple and abstract rules 

from explicit instruction and applying this information during frank experiential 

learning (Ruge & Wolfensteller, 2010). Such a feat presumably relies on successful 

processing of foreknowledge from a highly abstract, potentially verbally encoded 

sound representation toward a more ‘experience-based’ representation (Nakayama, 

Yamagata, Tanji, & Hoshi, 2008; Sussman et al., 2002). This allows us to compare 

explicit knowledge with actual experience and quickly adapt to fluctuating 

environmental demands. In this study, we used the MMN error response signal to 

investigate whether explicit foreknowledge about sound sequences alters a strong 

first impression learning bias that can be traced to the very first encounter with sound 

probabilities and their stability. We achieved this by first informing participants 

about the local and global characteristics of sound patterning on short and long 

timescales, respectively, before presenting multi-timescale sequences. Here we 

present evidence showing that prior knowledge about sound structures alters first 

impression bias effects on MMN when sequences are heard.     

Todd et al., (2014) discuss elsewhere why a first impression is formed stating 

that a regular versus rare sound at sequence onset is evaluated for information value. 

We have also discussed this in depth across previous chapters of this thesis (pg. 56-

58, 111). The predicted nature of the standard tone in the absence of an ecologically-

relevant linked consequence results in high-confidence (i.e. precision) that this sound 

is less important. In comparison, the information value of the rare pattern-violating 

deviant is unknown and potentially more salient because it signals that the 

environment may have changed. The respective information values are modelled 

with high-confidence in the context of a stable environment indicating that tone roles 
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are unlikely to change. The result is the formation of a robust precision-weighted 

first impression that impacts how predictions about each sound are modelled as the 

multi-timescale sequence unfolds. To date, first impression bias has only been 

studied in participants who have never heard and know nothing about sound 

transition statistics or overarching temporal structures embedded within the multi-

timescale sequences. Yet, Todd et al.’s (2014) explanation implies that the bias 

should not occur if participants have foreknowledge about sequence structures that 

negates relative information value and stability of transitional probabilities at 

sequence onset within the broader context of the over-arching sequence design.   

Here we further test the hypothesis that this learning bias can be traced to 

learning probabilistic information about the differential relevance of sound transition 

statistics and their stability at sequence onset (Todd et al., 2013). We use the multi-

timescale paradigm comprising block-contexts with two different duration tones that 

switch probabilities as the common “standard” (p = 0.875) and rare “deviant” event 

(p = 0.125) every 2.4 min then every 0.8 min across stable and unstable sequences, 

respectively. We propose that differential patterns in MMN modulation depend on 

assumptions formed at sequence onset about 1) sound information value, and 2) how 

stable transition statistics defining information value should be based on the very 

first encounter. If this is the case, then accurate foreknowledge about sequence 

structures prior to exposure should alter or eliminate first impression bias because 

the network is less “surprised” when tones reverse roles and/or when block-contexts 

start alternating faster in the unstable sequence. If this is not the case, we expect 

learning bias patterns to be uninterrupted by sequence foreknowledge.  

 

 



CHAPTER 4: FOREKNOWLEDGE ABOLISHES BIAS 

117 
 

4.2. Method 

4.2.1. Participants. Participants were 15 (10 female, 18-37 years, mean = 22 years, 

SD = 4.8 years) healthy community volunteers or undergraduate students from the 

University of Newcastle, Australia. Volunteers met inclusion criteria if they were 

aged 18-35 years, had normal hearing and were naïve to multi-timescale sequence 

exposure. Those meeting criteria were excluded if they reported on a history of head 

injury or neurological disorder, current diagnosis or treatment of mental illness, 

family history of psychosis or heavy alcohol/substance use. Remuneration was 

offered as course credit to students and cash reimbursement to community 

volunteers. Written informed consent was obtained from all participants consistent 

with standards approved by the Human Research Ethics Committee, University of 

Newcastle. 

4.2.2. The Multi-timescale Paradigm. In accordance with earlier studies (Frost, 

Winkler, Provost, & Todd, 2015; Mullens et al., 2014; Todd, Provost, & Cooper, 

2011; Todd, Provost, Whitson, Cooper, & Heathcote, 2013; Todd et al., 2014a; Todd 

et al., 2014b) and those experimental protocols presented in Chapters 1 (pg. 48-51), 

2 (Study 1, pg. 69) and 3 (pg. 97), participants heard the multi-timescale paradigm 

binaurally over headphones (Sennheiser HD280pro; see Figure 4.1). Participants 

always heard the stable before unstable sound sequence separated by 40 sec of 

silence and the long 60ms deviant was always heard first. 

4.2.3. Procedure. Participants were first interviewed to screen for exclusion criteria. 

This included an audiometric assessment that was administered using a pure tone 

audiometer (Earscan ES3S) to exclude for hearing loss and establish individual 

hearing thresholds (≤ 25 dB SPL) across 500 Hz -4000 Hz. Suitable participants 

were then fitted with a Neuroscan Quik-Cap comprising tin electrodes. Continuous 



CHAPTER 4: FOREKNOWLEDGE ABOLISHES BIAS 

118 
 

 
Figure 4.1. Diagram illustrating the multi-timescale design (Todd et al., 2013a) a In the contexts marked 
with diagonal lines, the 60 ms sound was the rare deviant (p = 0.125) and the (30 ms) sound was the 
regular standard (p = .875). In the contexts marked in grey, the probabilities (i.e. tone roles) were 
reversed. The context length within stable and unstable sequences were 2.4 and 0.8 min respectively, 
creating a difference of stability in the relative tone roles b Sections labelled 1(1st half data) and 2 (2nd 
half data) show how sound contexts were divided for halves-analysis as detailed in Todd et al. 
(2013a).  
 

EEG was recorded on a Synamps 2 Neuroscan system at 1000 Hz sampling rate 

(highpass 0.1 Hz, lowpass 70 Hz, notch filter 50 Hz and a fixed gain of 2010). The 

EEG data were collected from 32 electrode scalp sites (FZ, FCZ, CZ, CPZ, PZ, OZ, 

FP1, F3, FC3, C3, CP3, P3, O1, FP2, F4, FC4, C4, CP4, P4, O2, F7, FT7, T7, TP7, 

P7, F8, FT8, T8, TP8 & P8 in accordance with the 10-20 system, including left  

& right mastoids) and referenced to the nose tip. Vertical and horizontal electro-

oculograms were also recorded using electrodes placed above and below the left eye, 

and 1cm from the outermost canthus of each eye to monitor eye blinks and 

movement. Impedances were reduced to below 5 kΩ.  

Immediately prior to multi-timescale sequence exposure, participants were 

shown an image of the sound sequences identical whilst a researcher verbally 

conveyed a standardised script (see Appendix 4 for sequence image & script) 

informing each person on local and superordinate sequence structures. In short, 

participants were told that a long and a short sound would alternate roles as a 

repetitive standard and rare deviant at slow (2.4 min) then fast (0.8 min) speeds. The 

multi-timescale sequence was then presented over headphones as the participant 

viewed a film of neutral content with sub-titles (sound muted). All participants were 

asked to ignore sounds and focus on the film. After the sequences were played, 
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participants were given approximately 5 min to complete a post-test questionnaire to 

assess awareness of auditory tones and sequence structures. The questionnaire was 

made up of two items. Item one, “How aware were you of the patterning in the sound 

sequence”, required participants to choose one of three response options (Not Aware, 

A Little Aware, or Fully Aware). Item one was followed by a second question 

namely, “If YES, please briefly describe what you noticed about the sounds”. 

Participants were encouraged to provide a response if they reported being aware of 

sequence structure however this was optional.  

4.2.4 Data Analysis. The continuous EEG recording was examined offline to 

correct for major artefact and eye blinks using procedures in Neuroscan (4.5) Edit 

Software. Using this technique, a regression analysis in addition to artefact averaging 

was applied (Semlich, Anderer, Schuster, & Presslich, 1986). Output values were 

then assessed for suitability (> 30 sweeps in the average and < 5% variance) and 

applied to the continuous data set. Each data set was epoched from 50 - 300 ms pre- 

and post-stimulus, respectively. Epochs were baseline corrected to the pre-stimulus 

interval and averaged depending on stimulus type. Any epoch comprising variations 

that exceeded ± 70 µV were not included for analysis. All standard and deviant ERPs 

were digitally filtered with a 30 Hz low-pass filter. 

Standard and deviant ERPs were averaged separately for the period 

corresponding to the first-half of block-contexts which immediately followed point 

when tone roles switched, and 2) the second-half of blocks-contexts when tone-roles 

have been stable for some time in comparison (see Figure 4.1b). This analysis is the 

crucial comparison as we have consistently shown that evidence of first impression 

bias is maximal immediately after tone roles switch relative to the period before 

roles switch (Frost et al., 2015; Todd et al., 2014). Difference waveforms were 
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created by subtracting the ERP to a sound when presented as a standard in any given 

block-context period (i.e. first or second half) from the ERP to that same sound when 

presented as a deviant in the corresponding block-context period for each sequence. 

Sequence awareness data generated from responses to item one was merged into 

either aware (Fully or A Little Aware data combined) prior to analysis and examined 

by plotting the distribution (%) of responses (0 – not aware, 1 – aware). The 

minimum sweeps contributing to an average for any participant was 45 with the 

mean between 57 and 58 for all deviant waveforms. Standard and deviant ERPs for 

the period equating to the first- versus second-half of sound block-contexts for each 

tone, in each sequence were generated to calculate MMN difference waveforms.  

Mean amplitude for standard ERPs was extracted over two time windows 

occurring after stimulus onset. The first corresponded to the window used to define 

repetition positivity (50-150 ms) and the second to isolate differences over the P2 

period (140-170 ms). Mean-peak deviant ERP and difference waveform amplitudes 

were quantified as the maximum negativity over a 20 ms period centred on the most 

negative point (70-270 ms) following stimulus onset. This allowed for a reliable 

measure of the peak amplitude (Kujala et al., 2007) and resulted in eight MMN 

difference waveforms. The first five standards in a sound block and the first standard 

after each deviant were excluded to control for ERPs affected by a recent stimulus 

change (Sams et al., 1984). Standard and deviant ERPs and difference waveform 

amplitudes were compared separately in a repeated measures ANOVA at F4 with 

sequence (stable, unstable), deviant (first deviant, second deviant) and half (first, 

second) as within-subject factors. 4.3. Results 

4.3.1. Participant Awareness. All participants reported awareness of sound 

sequence patterning as indicated by a yes response to item one as well as a  
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Figure 4.2. MMN difference waveforms to the first (60ms) and second (30ms) deviant tone for A. Stable and B. 
Unstable sound sequences. The MMN waveforms for data obtained in the 1st half (filled lines) and 2nd half 
(broken lines) of sound block-contexts are displayed. In contrast to statistical evidence of first impression bias 
(significant half x tone x sequence stability interaction), no differential effect of sequences stability on MMN size 
to each deviant sound was observed. 
 

description of what was heard. Three participants provided a description that 

indicated some awareness of sound patterning (e.g. “The sounds alternated between 

two lengths one short one long. Sequences of mostly short sounds with rare long 

sounds, and sequences of mostly long sound with rare”). However, most participants 

(80%) were not able to articulate the patterning based on the description structure 

(e.g. “I didn't notice the pattern too much. I could not tell how much time was going 

by either. Overall I would say that the sounds were noticeable but I was not fully 

aware”). 

4.3.2. The Mismatch Negativity. Difference waveforms for both deviant types in 

stable and unstable sequences across block-context halves are presented in Figure 

4.2. MMN was elicited to both first and second deviant across block-context halves 

of stable and unstable sequences. Repeated measures analysis showed that MMN 

was larger for the first relative to second deviant only (F (1, 14) = 6. 41, p < .05 ƞ = 

.314). No other main effects or interactions were observed indicating that typical first 

impression bias effects on MMN were not observed when foreknowledge about 
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sequence structure was first provided before sounds were heard. Standard and 

deviant analyses are present in Appendix 5 

 

4.4 Discussion 

In previous first-impression bias studies, we present the multi-timescale 

paradigm to participants naïve to sequences without informing them about sequence 

composition and ask them to ignore the sounds (e.g. Fitzgerald et al., 2017; Frost et 

al., 2016; Mullens et al., 2014; Mullens et al., 2016; Todd et al., 2011; Todd et al., 

2013; Todd et al., 2014). In this experiment, conditions were identical except that we 

first provided participants with information about sound patterning and change 

emerging at shorter and longer timescales, respectively. It was anticipated that 

foreknowledge could attenuate or even eliminate first impressions based on 

information value and the element of “surprise” generated when tone roles match 

those presented at sequence onset as well as when tones reverse roles earlier than 

expected once the very first sound block-context in the unstable sequence is heard. 

The data are consistent with these hypotheses in that they do not replicate the bias 

pattern observed previously. In brief, MMN was larger to the first relative to second 

deviant tone. Neither half nor deviant type was modified by sequence stability 

indicating that relatively high-precision estimates about tone role stability are 

maintained even when tones started switching faster in the unstable sequence.  

We propose that, in the absence of foreknowledge about future input, the 

network relies on direct experience with sound contingencies and their stability at 

sequence onset to ‘lock in’ a first impression that transition statistics underlying 

differential information value are unlikely to change (Frost et al., 2016; Todd et al., 

2011; Todd et al., 2014). If so, an ‘explicit prior’ holding information about potential 
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causes of future states on increasing temporal scales could explain its disruption 

when it reliably informs the perceiver on exactly what will be heard in future. 

Mullens et al., (2014) used the multi-timescale paradigm to show how an existing 

prior could impact inferential learning in sound sequence processing (Mullens et al., 

2014). The authors manipulated the behavioural relevance of tones by instructing 

participants to respond to one sound feature (i.e. short vs. long duration sound) to 

determine whether this impacted order-driven learning bias. The bias was indeed 

prevented (i.e., MMN to both sounds affected in the same way by sequence stability) 

if participants initially performed a task in which the sounds are heard with equal 

probability. These data together with the present findings clearly show that we can 

experimentally remove the bias by explicitly creating a prior that counters the first-

impression of difference in standard and deviant probabilities and their stability 

embedded within the multi-timescale paradigm.  

The proposition that an explicit prior disrupts first-impression bias is in 

accordance with hierarchical learning processes and rests on the assumption that 

using probabilistic information to create a ‘prior’ provides a frame of reference 

against which impending surprise is quantified (Friston, 2005, 2012). Higher-order 

brain areas utilise contextual information over the longer term to modulate the 

degree to which dynamic changes in the shorter-term impact error signalling in 

learning. The presence of an explicit prior might interrupt first impression learning 

bias because the network is “less surprised” when structural patterning on multiple 

timescales eventually emerges and conforms to inferences formed indirectly through 

foreknowledge. Given that the learning of rules based on overt verbal instruction is 

typically adaptive (Doll, Jakobs, Sanfey, & Frank, 2009; Galizio, 1979; Hayes et al., 

1986; Hayes, 1993), keeping an explicit prior active for the purposes of directly 
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testing its veracity against environmental causes seems a worthwhile strategy for 

optimising efficiency in a network constrained by limited resources. This is in line 

with functional imaging data showing that utilising prior information in the MMN 

sequence learning process is attributable to top-down modulation over auditory 

cortical areas (Schröger, 1997; Sussman et al., 2002). Utilising an explicit prior 

based on foreknowledge may therefore exploit the ensuing computational efficiency 

during direct sequence exposure in what is a resource-intensive process (i.e. the free 

energy principle; Friston, 2005).  

The proposition that the bias emerges when the associated inferential 

hierarchy deems first learning, and the wider context in which learning occurs, a 

benchmark for measuring surprise identifies two, and perhaps overlapping, entry 

points for an explicit prior to interfere with this process. First, an explicit prior pre-

empts automatic allocation of differential information value based on the initial 

encounter with sound probabilities and their stability that subsequently biases 

learning thereafter under naïve conditions (Frost et al., 2016; Todd et al., 2014). If 

so, associated inferences are ‘blocked’ when foreknowledge about sound 

probabilities and their stability is provided because the perceiver receives 

information that both first and second deviants hold equal informative value or 

relevance in their respective block-contexts. The MMN elicited to either deviant was 

not modified by sequence type in first-half data acquired from the period 

immediately after the tone roles switched indicating that learning in both block types 

unfolded in a similar manner. Equivalent learning rates across block types therefore 

persisted across the entire experimental session even when the superordinate 

structure was violated once the tone roles start switching more often in the unstable 

sequence. Given that the first-impression bias is proposed to be linked to the 
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likelihood of initial sequence compositions changing (Fitzgerald et al., 2017; Frost et 

al., 2016; Todd et al., 2011; Todd et al., 2013), this may explain why the bias is not 

observed when we know exactly when and how compositions will emerge over the 

entire experimental session.   

Another way to conceptualise the present findings is that the network was 

engaged in a type of “confirmation bias” that favoured sequence foreknowledge first 

and foremost. The network may have actively sought to confirm information 

outlined in an explicit prior following learning, albeit indirectly, by way of 

foreknowledge. Confirmation bias toward prior information is observed even when 

foreknowledge is inaccurate (Doll et al., 2009; Galizio, 1979; Hayes, 1989, 1993; 

Hayes et al., 1986). Misinformation about future experience with stimuli 

probabilities has been shown to drive response behaviour despite direct evidence to 

the contrary resulting is reduced task performance (Doll et al., 2009). It is therefore 

possible that the network sampled and/or processed information in a way that 

confirmed pre-existing beliefs associated with an explicit prior. One way of testing 

this is by priming participants with inaccurate foreknowledge about sequence 

structures or omitting foreknowledge about first deviant/block-context relevance 

prior to multi-timescale exposure and examining whether this impacts on precision-

weighted MMN error signalling (i.e. learning rates) during actual sequence 

processing.    

In considering the wider MMN literature, the present results indicate that the 

MMN network can utilise instruction during multi-timescale sequence processing 

over the longer term, and this alters how MMN amplitude is modulated relative to 

that elicited to the same sounds when participants are uninformed (Frost et al., 2016; 

Todd et al., 2011; Todd et al., 2014). This challenges the assumption that MMN 
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cannot be used to study more abstract, contextual influences on pattern learning 

(Jääskeläinen et al., 2004; May et al., 1999; May & Tiitinen, 2010; Wacongne et al., 

2011). Our results are like Sussman et al.’s, (2002) who found that foreknowledge 

about the local and global aspects of sound structures prior to sequence exposure 

impacts MMN elicitation. MMN was not observed to a locally deviant sound in 

participants primed with prior information relative to those fully naïve to sequence 

structures indicating that this sound was processed as part of an overarching 

repeating tone pattern (i.e. 11112; Sussman et al., 2002). The authors attributed this 

to an interaction between predictive and more cognitive-based, attentional 

mechanisms where prior information changed how top-down processes affected the 

information used in the MMN prediction error signalling process. Broadly speaking, 

these interpretations are much like those described here; in that sound structure 

foreknowledge influences how higher-order brain areas modulate very early 

stimulus-driven ERP responses and very likely play a crucial role in modulating 

MMN error signalling that adapts to suit demands imposed by varying experimental 

conditions.  

We also think it is important to expand on the present finding showing larger 

MMN to the first deviant tone type than that to the comparatively shorter, second 

deviant tone. We observed this same result in Chapter 3 when participants were 

engaged in a concurrent cognitively-demanding task whilst hearing the multi-

timescale sequences. Much like the present finding, MMN was always observed 

when a rare sound violated the locally regular pattern. The formation of internal 

models and their dynamic updating is therefore not disrupted by foreknowledge per 

se in-line with studies showing that providing participants with prior information 

about sound sequence probabilities does not eliminate MMN (e.g., Rinne, Antila, & 
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Winkler, 2001; Horváth et al., 2011). In Chapter 3, we referenced bias data published 

by Mullens et al. (2014) to explain simple deviant effects; the authors showed that 

MMN is always larger to the first versus second deviant, irrespective of whether the 

shorter or large tone is the first deviant at sequence onset (see pg. 110 for 

discussion). This clearly shows that differences in the physical sound properties 

cannot fully account for differential tone effects on MMN amplitude in our program 

of bias studies. Given that the perceived higher importance of the first deviant tone 

emerges even when concurrent task demand increases (see Chapter 3), it is possible 

that this same mechanism of bias is activated when participants are fully informed on 

sound sequence structures. That is, the initial rarity of the first deviant may have a 

powerful impact on the system such that first-order inferences about the potentially 

higher and lower information value of first deviant and first standard tones, 

respectively, prevail despite foreknowledge that both sounds are equally informative 

markers of pattern violations in their respective contexts. The reduced or eliminated 

“surprise” when tone roles change is therefore probably more malleable to sequence 

foreknowledge and likely explains the elimination of the remaining bias patterns 

(i.e., the differential modulation of MMN to the two tones in the two different 

sequences).  

In terms of whether participants were knowingly aware of sound sequence 

patterning in this study, our findings are like Sussman et al.’s, (2002) who found that 

participants could not describe any patterns after hearing an oddball paradigm even 

when they attended to tones and/or were informed on the sound structures before 

hearing sequences. There are clear limitations associated with using self-report to 

measure sequence awareness that compromises test validity. For example, 

participants can utilise memory retrieval strategies based on explicit communication 
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of sequence structures delivered by researcher (e.g. recall; Graf & Birt, 1996). 

Sequence structures embedded within the multi-timescale paradigm are considerably 

more complex, and therefore much harder to explicitly detect relative to an oddball 

sequence like that used by Sussman et al., (2002). We are therefore confident that 

participants were not fully aware of sound patterning in this experiment. Rather, we 

suspect that participant focus naturally fluctuated between sounds being played and 

watching the film.  

First impression order effects on perception and the context effects that 

inform learning arise from and are constrained by carefully considering previous 

experience with sound information over time. When information reduces surprise 

about the likelihood of future sources of sound compositions, it changes how 

perceptual learning unfolds and explains why accurate foreknowledge about future 

sound experience alters perceptual learning. Equivocal MMN amplitude regardless 

of block-context or overall sequence stability indicates that the network was 

‘unsurprised’ by changes in both the lower and higher-order structures over the 

longer term. Yet it seems that the relative weighting, in terms of potential sound 

relevance, placed on sound probabilities presented first persists throughout sequence 

learning.  

Our interpretations of prior information preventing first impression order 

effects on sound pattern learning need to be verified in future studies that include a 

sufficiently large sample size with the aim of determining whether the present results 

hold true in analyses that include a control group comparison. The proposed reasons 

for why the bias disappears in the presence of an explicit prior that precedes direct 

experience with sound probabilities and their transitions remain theoretical, and 

invite further opportunities for studying potential mechanisms involved. There is 
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increasing evidence that mechanisms underpinning sound relevance filtering based 

on dynamic models of statistical information involve cognitive brain areas in the 

sense that prediction error signals are reliably elicited to sound events that are 

probable over multiple timescales, yet are modulated differently depending on 

demands and/or provisions imposed by the external environment. Future studies can 

help to isolate the impact of one or more constraints on the learning process under 

which order-driven biases emerge. ERP responses to sounds with benefit of sequence 

foreknowledge point toward top-down involvement with primary sensory 

processing, as inferences stored using an explicit prior increase in and/or maintain 

predictive power once the network validates this information through direct sound 

experience.  
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Chapter 5:  

General Discussion and Conclusions 

 

The previous three chapters described the empirical work undertaken in this thesis. 

This chapter presents a summary of the experiments conducted and discusses the 

general implications for understanding the role of first impression bias mechanisms 

in perceptual inference and learning including relevance to MMN literature. These 

data show that order-effects are robust and long-standing except when we undertake 

an attention-demanding concurrent task or know exactly what we will hear before 

sound sequence exposure. We propose that data generated in response to the MMN 

multi-timescale paradigm are a striking example of a dynamic and hierarchically-

organised inferential learning process that assists the brain in minimising its free 

energy. In terms of major theoretical contributions, this thesis adds to the proposition 

that cognitive processes influence perception and that attention weights the precision 

of our inferences during perceptual learning. We first outline the key findings of this 

thesis supporting these contributions. A critical assessment on the limitations of 

theory and methodology is then presented before directions for future research are 

considered.  

 

5.1. Short Synopsis 

The experiments reported on in this thesis were designed to test mechanistic 

hypotheses, conceptualised in terms of hierarchical inference processing that explain 

the generation and modulation of auditory evoked brain responses underlying first 

impression bias in MMN. Predictive coding theory asserts that relevance filtering in 
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perception arises with processing of current information from the sound 

environment, and precision-weighted predictions about the cause of this input; this 

assumption motivated us to develop and test hypotheses about mechanisms of 

learning biases revealed using MMN. The working hypothesis of this thesis was that 

first impression bias is evidence that the brain has the capacity to implement, 

monitor and adapt learning over much longer timescales during relevance filtering 

than those recognised in conventional literature of this field. Our primary hypothesis 

is that first learning about sound probabilities (local sound patterning) and their 

stability (superordinate sound patterning) slows learning rates when tone roles later 

switch contradicting initial experience, and also when subsequent experience violates 

superordinate patterning determining when tone roles should switch. The studies 

conducted provide further tests of this hypothesis by exploring: 1) whether the 

effects hold in a replication study using a much larger sample size compared with 

previous studies, and 2) how the effects are altered by different experimental 

manipulations used to probe brain mechanisms. 

First impression bias was found to be a robust phenomenon in a larger 

sample and the differential modulation patterns for first and second deviant tones 

remained over multiple encounters with the same sequence type (Chapter 2). 

Manipulations that interfere with more cognitive than perceptual abilities interfere 

with the bias in various ways (Chapters 2-4). First impression bias was altered if 

concurrent task demand increased (Chapter 3), or if foreknowledge about sequence 

structures was provided prior to hearing the multi-timescale sequence (Chapter 4). 

We shall now highlight the importance of these findings one by one. 
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5.2. Implications of this Thesis 

5.2.1. What have we learned about first impression bias? The aim of the work 

described in the first results chapter, Chapter 2, was to determine the replicability 

and longevity of first impression bias by testing whether associated patterns are 

robust when examined in an expanded dataset (Study 1) or following repeated 

encounters with stable or unstable sound sequences (Study 2), respectively. 

Additional analyses were also performed on datasets generated from each study to 

test whether adaptation-based explanations could account for order-driven effects 

observed. 

Successful replications of previous results can provide greater confidence 

about the veracity of a hypothesized effect (Brandt et al., 2014). When a relatively 

large sample of participants (n = 35) heard the multi-timescale paradigm (Study 1, 

Chapter 1), we replicated the same order-effects on MMN amplitude revealed in 

comparatively smaller datasets produced in earlier studies (n = 14-20; Todd et al., 

2011; Todd et al., 2013; Todd et al., 2014a; Todd et al., 2014b). These findings are 

important because they establish the reliability of first impression bias. That is, we 

can say with confidence that first impression bias in sequence learning reflects a 

reliable phenomenon that cannot be attributed to random variation due to insufficient 

statistical power (Brandt et al., 2014).    

In Study 2 of this same chapter, we investigated the longevity of first 

impression bias on MMN amplitude to first and second deviant tones and found that 

a slowed learning rate for the second but not first deviant was remarkably persistent 

across both stable and unstable sequence types. Participants who heard four 

occurrences of either sequence showed MMN modulation patterns equivalent to 

those generated in the stable sequence of Study 1 with rapid learning evident in 
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responses to deviants in block-contexts that matched those at sequence onset, with 

learning rates to the second deviant markedly slower in comparison. To emphasize, 

repeated exposure to sound probabilities in both block-contexts did not override 

order-effects on MMN amplitude modulation.  

A key difference concerning the Chapter 2, Study 2 variant of the typical 

multi-timescale design is that the superordinate pattern was not violated across 

conditions because the same stable or unstable sequence was presented four times 

and block-contexts lengths appeared at fixed intervals across the entire experimental 

session. One explanation of these data is that first impression bias persists if higher-

order predictions about the stability of local transition statistics continue to hold 

true with continued experience. This is important because it indicates that 

predictions about tone probabilities and their stability anchored to a first impression 

bias prevail with recurring experience if assumptions about the latter are not 

violated. It also suggests that higher-order predictions consistently slow local pattern 

learning when sound probabilities do not match those stored in a first impression, 

even after 30 min of sequence processing.  

Across both Study 1 and 2 (Chapter 2), we directly tested whether SSA 

effects could explain key data patterns we attribute to longer-term learning bias 

anchored to a first impression. We asked whether SSA mechanisms could account 

for the reversal of order-effects on MMN between sequence types (Study 1) and/or 

between deviant types in the unstable sequence immediately after tone roles switch 

(Study 2). In both analyses, we revealed particularly robust evidence against SSA 

being able to fully account for first impression bias effects on sound sequence 

learning. 
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Chapter 3 reported on the impact of increased concurrent task demand on the MMN 

modulation patterns typical of first impression bias during exposure to the multi-

timescale paradigm. The initial rationale was that engaging participants in a 

cognitively or attention-demanding task could reduce availability of higher-level 

attentional resources, interfering with the network’s capacity to utilise high-precision 

longer timescale predictions to modulate (or bias) bottom-up information. We 

showed that increasing task demand eliminates first impression bias. Those who 

completed an attention-demanding WM task or perceptual task showed basic 

stability effects in which MMN amplitude increased both from earlier to later periods 

within a block and from shorter compared to longer block types. This is important 

because it indicates that some level of cognitive and/or attentional capacity is needed 

to acquire and/or implement the assumptions derived from first-impressions. This 

also means that when attention-based cognitive resources are depleted, learning 

about transitional probabilities may be limited to local sound patterning emerging on 

shorter timeframes only.   

 

In Chapter 4, we showed that fully informing participants about sequence structures 

before they heard the multi-timescale paradigm dramatically alters order-driven bias 

effects on MMN amplitude. In this study, we wanted to test whether bias would be 

eliminated by preventing surprise when tones reverse probabilities or when blocks 

lengths change in the multi-timescale sequences. First impression bias was not 

observed when prior information about transitional structures underlying local and 

superordinate regularities was provided. Instead, foreknowledge facilitated rapid 

adjustment to changes within the sequences supporting the conclusion that first 

impression order-driven bias emerges only when accurate information about 
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sequence structures has not been learned already. This is important because it 

indicates that the MMN signal in addition to patterns of bias are sensitive to explicit 

verbal instruction about what will be heard in future.   

We acknowledge that the sample size used in the Chapter 4 study is modest 

relative to those reported on in Chapter 2 and 3, and this study requires replication 

to increase validity of our interpretations. Importantly however, first impression bias 

has been shown to emerge in sample sizes comparable to those reported on in 

Chapter 3 and thus we remain confident that learning biases are impacted by 

foreknowledge. Collectively, the studies in this thesis support our overarching 

assumption that first impression bias arises with active and dynamic interactions 

between simple sensory and higher-order cognitive mechanisms spanning multiple 

levels of processing.  

5.2.2 A final comment on the role of SSA in first impression bias. In 

disseminating our work across multiple contexts (e.g. national/international 

conferences, manuscript reviews), we are often asked to defend against assertions 

that the patterns evident in differential modulation of MMN amplitude in multi-

timescale sequences are examples of very simple SSA mechanisms (May & Tiitinen, 

2010). Knowledge claims in science are defended by making the best argument 

possible for that claim given the data, and are imperative in scientific progress 

(Shuell, 1987). As such, it important to emphasize that we do not discount the 

contribution of adaptation effects to results implicated in this thesis. SSA and short-

term plasticity are frequently observed in the cortex (for review, see Calford, 2002), 

particularly in the auditory cortex (Brosch & Schreiner, 2000; Condon & 

Weinberger, 1991), and a comprehensive theory of MMN should take these effects 

into account.  
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As introduced earlier (see 1.3.1 Early Accounts of MMN), Näätänen et al. 

(2005) neatly summarise several phenomena measured using the MMN signal that 

cannot be accounted for by the adaptation hypothesis. We think first impression bias 

is another such phenomenon. With increasingly complex patterns like those used in 

our paradigm, we are seeing effects on transition statistics over minute-long time 

frames. This is because the network needs more time and sufficient regular 

occurrences to build a prediction model of tone role stability (i.e. block-context 

length). We directly tested the SSA hypothesis of first impression bias across both 

studies in Chapter 2 and found that exposure to the long sound as a repeating 

standard could not explain the differential response to deviant tones in neither the 

stable or unstable sequence (as discussed on pp.’s 90, & 98-100). Furthermore, if 

bias effects were solely driven by stimulus-driven information embedded within 

sequence configurations they should not be altered by manipulating cognitive 

resources and/or prior knowledge about sequence structures as clearly shown in 

Chapters 3 & 4, respectively. Together, these studies challenge any model that 

assumes the first impression bias phenomenon can be accounted for by purely 

bottom-up influence. This thesis therefore adds to an increasingly convincing case 

that cognition plays an important role during incidental (i.e. task independent) 

learning about regularities on multiple timescales in sound sequences. 

  

5.3 How cognitive is perception in inferential learning? 

In this thesis, we extend upon current understandings of MMN and sound 

sequence processing by demonstrating that inferential learning mechanisms adapt to 

experimental demands that expend attentional and/or cognitive resources (as in 

Chapter 3 & 4). The notion that perception is more than just the passive receipt of 
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sound information is not a novel concept per se – it has long been supposed that 

perception is shaped by attention, learning, memory and expectations (e.g. 

Helmholtz, 1902/1962; Kienker, Sejnowski, Hinton, & Schumacher, 1986). Yet, the 

degree to which the brain utilises cognitive resources to compute meaning and 

uncertainty from sensory input whilst maximising redundancy is an area of 

increasing interest across the empirical and theoretical cognitive neuroscience 

literature (e.g. Avena-Koenigsberger, Misic, & Sporns, 2018; Clark, 2017; Cocchi et 

al., 2016; Parr & Friston, 2017; Ransom, Fazelpour, & Mole, 2017). In this thesis, 

we have learned that first impression bias effects observed in earlier studies will not 

always reflect the structures embedded within the multi-timescale sequences under 

conditions that place varying demands on cognition (as discussed on pp. 122-124, 

155). We shall now consolidate this proposition by discussing why explanations of 

attention in the MMN literature are limited in this regard. We finish by considering 

the role of attention-based cognitive resources in learning biases and how these ideas 

fit with models of human cognition more broadly. 

In the MMN literature, there has been debate regarding the degree to which 

attention influences the MMN response. Mäntasylo and Näätänen (1987) and 

Näätänen (1992) were first to propose that MMN elicitation is insensitive to 

manipulations of attention and is therefore a useful measure for unveiling 

mechanisms of implicit information processing. The MMN has since become 

described as an established marker of “pre-attentive” learning about regularities 

mainly because attention is not required to generate it. Yet assumptions about how 

attention modulates MMN amplitude are less clear and inconsistent not well 

formulated (as discussed on pp. 20-22). Here we emphasize that explanations are 

conflated by mixed findings and argued that understanding attentional effects on 
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MMN in absolute terms (i.e. either there is an effect of attention on MMN elicitation 

or not), as is often the case in conventional interpretations, undermines the potential 

significance of these findings and omits understanding the relative effects of 

attention on MMN amplitude. Winkler (2007) expands on earlier accounts by 

advocating that “categorical” information interacts with top-down effects yet 

auditory sensory information is still assumed to be processed independently of 

attention. Views that top-down processes can influence which sensory information 

receives additional processing during the MMN deviance-detection process (Chennu 

et  al., 2014; Sussman, 2013; Sussman, Ritter, & Vaughan, 1998; Sussman, Winkler, 

Huotilainen, Ritter, & Näätänen, 2002), but do not impact the actual deviance-

detection process itself (Rinne et al., 2001; Ritter, Sussman, Deacon, Cowan, & 

Vaughan, 1999; Sussman, Winkler, & Schröger, in press) are only partially 

consistent with the results in this thesis. Thus, a hierarchical pattern recognition 

system in the brain is the most plausible assumption whereby a higher level in the 

hierarchy encodes for a higher level of pattern complexity. 

We developed studies in this thesis with the assumption that attentional 

mechanisms can modulate processing of all input during MMN sound relevance 

filtering albeit the level of contribution depends on a multitude of factors: attention 

effects in learning could be influenced by the types and timing of patterning and 

violations that emerge within the auditory stream, resource availability, experience, 

concurrent task demands, network integrity and so forth. We also assumed that 

attention is a limited and valuable cognitive resource pertinent to inferential learning 

on multiple timescales (as discussed on pp. 46, 109, 124, & 128). These assumptions 

form part of predictive coding view and shaped our understanding of how attention 

and predictive mechanisms interact in the MMN-generating process. These 
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assumptions do not support MMN amplitude being a marker of “pre-attentive” 

sensory learning, although to do not challenge the idea that MMN elicitation is. In 

actual fact, we emphasize that applying the term “pre-attentive” to MMN is 

misleading; in that its elicitation is clearly a very automatic process because it is 

observed in sleep and coma, but its amplitude is not. Rather, we think attentional 

resources are selectively used based on environmental variability over the longer-

term, informative value of transition statistics and associated precision estimates that 

together determine how the prediction error signal processing unfolds (as discussed 

on pp. 14, 31 & 70).  

In explaining first impression bias effects on MMN amplitude, we argue that 

the brain categorises one sound as relatively redundant and the other has as being 

potentially more meaningful in terms of information value following exposure to two 

sounds of high and low probability, respectively (i.e. the information value 

hypothesis as discussed on pp. 68-70, 100, 127, & 151-153). Elements of this 

hypothesis were introduced in the very first published paper by Todd et al., (2011) 

who revealed primacy effects on MMN amplitude. Our most up-to-date 

understanding is that this feature, together with the overarching assumption that the 

transition statistics defining the binary state behaviour at sequence onset is very 

stable, causes top-down attention-based cognitive mechanisms to modulate learning 

and error signalling in a way that reveals long lasting biases. Strong support for the 

importance of the information value hypothesis was obtained when Mullens et al. 

(2014) demonstrated that first impression bias disappears when sequences are 

manipulated such that the binary state properties (i.e., being 30 ms and 60 ms in 

length) belong to both common and rare sounds at sequence onset, yet will 
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eventually emerge if a binary distinction can be gleaned from information over the 

longer-term (as discussed on pg. 111, 148).  

The first-impression bias reported in this thesis shares similarities with 

phenomena observed in human cognitive information processing models more 

broadly such as computational applications of Adaptive Resonance Theory (ART; 

Carpenter & Gaddam, 2010; Carpenter & Grossberg, 2017). In terms of theoretical 

assumptions, there are many commonalities between ART and other learning models 

including predictive coding and early accounts of MMN, despite the former denoting 

a purely cognitive model of human categorical learning and reasoning. These models 

are similar in that they all assume: 1) the neural network is equipped with a top-

down predictive element and a bottom-up input driven element, that interact to 

generate prediction errors, and 2) attention operates on representations of input. In 

ART, the default network encodes features as distinct categories of a binary 

relationship allowing it to act upon relative neural states whilst enduring variability 

inherent to more absolute states of learned input (Carpenter & Grossberg, 2017. The 

system categorises input into that which is consistently present versus absent to form 

an expectation about a ‘critical feature pattern’ and compares this with bottom-up 

information (Carpenter & Gaddam, 2010; Carpenter & Grossberg, 2017). 

Computational examples of ART show that the network is prone to errors that delay 

new learning because it pays ‘too much’ attention to category features critical during 

early learning (Carpenter & Gaddam, 2010).  

Such assumptions are just like our proposition that attentional resources are 

used to ‘lock-in’ a first impression of information value based on a binary distinction 

between a sound that is predicted and uninformative versus that which is unexpected 

and potentially important. This means that depleting attention-based cognitive 
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resources (Chapter 3) or providing exclusive foreknowledge (Chapter 4) that either 

disables or removes the capacity to categorise input into a binary distinction disrupts 

the tendency to prioritise early pattern learning over later novel experience.  

ART networks will eventually learn a new categorical representation in response to 

prediction errors but only after a bias is introduced into the network; bottom-up input 

thereafter predisposes the network against prioritising attentional resources toward 

earlier feature pattern learning (Carpenter & Gaddam, 2010). We see similar effects 

on our data with learning biases diminishing by the second-half of block-contexts 

once the network learns that the source of input has changed. Models of human 

cognition that assume attentional resources bias learning away from new input 

corroborate our position that attention-based cognitive mechanisms modulate high 

precision-weighting of sensory input resulting in learning bias thereafter. In this 

regard, perhaps we are seeing more cognitive effects on perception under conditions 

that elicit or alter patterns of first impression bias in sound sequence processing. 

Understanding more about the role of cognition in perception is therefore imperative 

for understanding the mechanics of hierarchically-driven inferential learning. 

The studies comprising this thesis add to the multi-timescale study program, 

contributing to an increasing appreciation of the potential role of attention-based 

modulatory processes in the first impression bias phenomenon. We conclude that 

MMN is impacted by top-down influences and assert that 1) modulations of MMN 

amplitude are impacted by availability of attention resources, and 2) the emergence 

and/or altering of a strong first impression bias observed under different 

experimental conditions is mediated by attention-based augmentation of prediction 

error signaling. The results add to a growing literature indicating that although MMN 

is elicited under altered levels of consciousness, its amplitude is very sensitive to 
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experimental conditions that place demand on attentional resources.  We therefore 

endorse modern re-conceptualisations of traditional views that are open to the 

possibility that the entire evoked-potential is susceptible to modulation by attention 

(Auksztulewicz & Friston, 2015; Feldman & Friston, 2005; Friston, 2005). The 

revelation that cognitive manipulations affect the bias phenomenon highlights that 

learning more about the role of cognition in perception is paramount in helping us 

reach a more holistic understanding of inferential learning, and invites opportunity 

for considering more cognitive models of learning and their implications for human 

sound processing. 

 

5.4. Sensitivity to superordinate patterning on slower timescales  

Not only have we learned that increased concurrent task demand interferes 

with learning patterns on slower timescales, this thesis shows that that bias patterns 

prevail if we do not violate the superordinate sequence structure and that differences 

in MMN amplitude to first and second deviants in the unstable sequence may be 

traced to learning the superordinate structure once the entire stable sequence is 

heard. The aim of this section is to comment on studies indicating that MMN is 

insensitive to global regularities and highlight why this does not necessarily denote 

evidence that the underpinning network cannot extrapolate and utilise higher-order 

regularities to modulate learning about local sound patterning.  

The term global patterning is comparable to the concept of superordinate 

patterning discussed in our papers and has been used to describe probability 

information evident over longer timescales than local stimulus transitions. The 

former is generally used in studies examining long-term effects on MMN to global 

sound regularities over several tens of seconds whereas we emphasize that 
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superordinate learning includes these timescales and extends to those operating 

across many minutes (Kiebel et al., 2008). Network sensitivity to global patterning 

has been studied recently using computational modelling of data generated in 

oddball sequences. For example, Wacongne et al., (2012) modelled thalamic input to 

layer 4, with prediction error units in more superficial layers 2/3 within primary 

auditory cortices that together simulated a three-tier circuit embedded within an 

entire cortical hierarchy. Predictive coding simulations were modelled on data 

generated using a five-tone repeating standard (i.e. AAAAB) occasionally violated 

by replacing input B with input A (i.e. AAAAA, p = .20, SOA 1200 ms; 

Bekinschtein, Dehaene, Rohaut, Tadel, & Cohen, 2009). The repeating AAAAB 

sequence is therefore standard at the more superordinate or global level (i.e. over the 

entire experimental session) and deviant at the local level (i.e. from one sound to the 

next). Wacongne et al.’s (2012) model indicates that the inferential process reflected 

in MMN is “blind” to global transition probabilities and rather, is dominated by the 

local prediction of an A sound following an A (Wacongne et al., 2012), replicating 

earlier findings generated using the same paradigm (Bekinschtein et al., 2009; 

Wacongne et al., 2011).  

Wacongne et al., (2012) conclude that a relatively simple hierarchical 

architecture can account for the major empirical properties of the MMN including an 

apparent insensitivity to the global context of sound sequences when the timescale 

exceeds temporal processing capacities of primary auditory cortices. One might 

argue that this is evidence against our proposal that the network is sensitive to the 

super-ordinate structure embedded with the multi-timescale sequence. We however 

contend that Wacongne et al.’s (2012) conclusions apply only to the sequence 

structure used in their study, and that generalising results based on one type of 
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sequence design to other complex sound sequences risks over-simplification of the 

neural network.  

Predictive coding assumes that each level within a hierarchy sends prediction 

errors in a feed-forward fashion whereas predictions are sent down the hierarchy 

(Friston, 2005). The network modelled by Wacongne et al. (2012) is based on 

processing capacities limited to primary sensory areas only and therefore it does not 

model potential engagement of rostral brain areas in modulating stimulus-driven 

responses during exposure simple sequences. Put simply, we do not know what 

happens to the prediction error signal after it is processed by layer 4 in Wacongne et 

al.’s (2012) model. Indeed, each level of the hierarchy is specifically tuned to be 

most sensitive to a particular temporal scale. The primary auditory cortex is most 

sensitive to information gathered over relatively short timescales whereas higher 

levels may extract regularities over tens of seconds to minutes, days, weeks and so 

forth (Kiebel et al., 2008). Wacongne et al.’s (2012) model reflects only one 

timescale associated with pattern extraction in the shorter term and so is an 

insensitive measure of changes in neural states modelled over much longer 

timescales. This is because the time span over which the sound transitions can be 

learned is strictly limited by the processing capacity of the memory associated with a 

given level of the cortical hierarchy (Kiebel et al., 2008).  

Wacongne et al.’s (2012) finding contradicts those found by Sussman et al., 

(1998) who essentially used the same sequence albeit with a considerably shorter 

SOA (100 ms) and found that MMN to the B in the AAAAB sequence disappeared 

indicating that the final B sound in the five-repeating sequence was processed as part 

of a global standard. However, Sussman and colleagues did not violate a global 

pattern per se and rather, concluded that lack of MMN suggests the network had 
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coded the fifth tone as part of the five-tone repeating standard pattern (Sussman et 

al., 1998). It has however been argued that establishing a regularity in the absence of 

a violation is a less sensitive measure of the type of regularity coded in the internal 

model (Herholz, Lappe, & Pantec, 2009).  

Herholz et al. (2009) used a similar paradigm to both Wacongne et al., (2011) 

and Sussman et al., (1998) and found that violating global regularities elicits a MMN 

response. One key difference in Helholz et al.’s (2009) study is that global pattern 

violations were frequent (p = 0.50), the SOA of tones was quite long (1000 ms) and 

the pattern therefore had to be extracted based on a longer time range. It was 

suggested that 1) higher-order pattern extraction occurs at much slower rates and do 

not necessarily “pop out” straight away relative to very rare pattern violations, 

consistent with Kiebel et al.’s (2008) findings, and 2) that responses to violations of 

patterns reflect a more sensitive measure for detecting this. These conclusions also 

imply that Wacogne et al.’s (2011) paradigm failed to elicit MMN because of the 

relative probabilities of the global versus local patterns embedded within their 

sequence; in that increasing the likelihood of experiencing a global pattern over the 

longer-term, compared with encountering local sound patterning on shorter 

timescales, could have elicited a MMN following a global pattern violation.  In terms 

of whether the MMN is a sensitive measure of the networks sensitivity to 

superordinate regularities, or any complex patterning for that matter, results clearly 

differ by experimental design.  

Todd et al., (2013) emphasize that there is “no ideal paradigm” for using the 

MMN signal to study perceptual learning. The multi-timescale sequence design 

confirms the brains capacity to learn and utilise global or superordinate temporal 

structures because MMN amplitude is affected when we violate/reinforce this 
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pattern. We continue to learn more about this phenomenon because we purposefully 

use the time-scales of sensory input as an experimental factor to study how learning 

transitional probabilities in the shorter term is constrained by learning the stability of 

these statistics over the longer term. Yet we would never have uncovered evidence of 

network sensitivity to superordinate patterning if we never satisfied our curiosity 

about whether MMN amplitude changed across block-context halves (in studies 

succeeding Todd et al., 2011). Predictive coding simulations and ERP studies show 

differing results and we think this is because different protocols place different 

demands on the underpinning network. Interpreting potential mechanisms of the 

MMN process are therefore bound by each novel study design and analysis 

techniques. To conclude this discussion, we think that generalising explanations to 

other paradigms risks undermining the complexity of the network as well as devalues 

the unique contributions that can be made by different experimental designs.  

 

5.5. Limitations and Future Directions 

One point of controversy stemming from this thesis concerns the degree to which 

mechanisms of attention control the weighting, or gain, of MMN signals under 

conditions in which first impression bias effects are observed, altered or eliminated. 

Our experimental methods are limited in that we cannot directly determine how top-

down predictions and attention-based precision estimates interact for each of our 

given experimental conditions. We therefore acknowledge that our current 

methodologies indirectly test the information value and superordinate pattern 

learning hypothesis and remain theoretical for now.  

With increasingly complex sound patterns, extracting enough regular 

instances of the superordinate pattern to build up an internal model with high 
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precision also increases. To test the superordinate patterning hypothesis of first 

impression bias it would be ideal to precisely track how MMN to the proposed 

superordinate pattern violation changes over time (Friston, 2005; Kiebel et al., 2008; 

Todd et al., 2011, 2013). A limitation of our study design is that we cannot directly 

measure this because ERPs used to calculate MMN require averaging over many 

trials. Our data is constrained by too few data points resulting in low statistical 

power and so conventional MMN methods used to test the networks sensitivity to 

superordinate sound patterning cannot be applied to multi-timescale sequence data. 

Adopting explicit biologically plausible neuronal models such as dynamic causal 

models (DCMs; David et al., 2006; Friston et al., 2003) may provide a fruitful 

avenue for directly examining the causal architecture of neuronal interactions 

between lower and higher-order brain areas during multi-timescale sequence 

processing. The aim of DCM’s is to test a-priori hypotheses about both the coupling 

among brain areas or sources as well as how that coupling changes with different 

experimental factors. Applying computational models to our multi-timescale data 

may therefore afford a better understanding of attention-based augmentations of first 

impression learning bias under typical and varied experimental conditions. 

The emergence of sophisticated computational tools expands the questions 

we can ask about how auditory systems engage in learning biases when modelling 

the cause of sound sources from the acoustic environment. Explaining the first 

impression bias as evidence of precision- or confidence-weighted predictions 

modelled on multiple timescales is a working hypothesis and needs to be confirmed 

by more studies that continue to test assumptions predicted by our interpretation. For 

example, Mullens et al., (2016) rightly point out that it is important to test if the 

superordinate structure is somehow encoded in memory with high-confidence during 
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first impression formation and, when the higher-order structure of the sequence 

changes, high-confidence in predictions about the original structure are re-adjusted 

in response. We are unsure at this stage whether a superordinate pattern violation 

fully releases subsequent learning about tone roles in switched contexts from bias 

thereafter or triggers the formation of a new first impression, albeit possibly 

weighted by lower-precision, that then biases sequence learning for the remainder of 

the unstable sequence. As discussed in Chapter 3, the notion that first impression 

bias indicates tiers of learning with increasing abstraction can be accommodated by 

the recent development of an influential mathematical modelling tool – the HGF 

model of individual learning under uncertainty (Mathy’s et al., 2011).   

The HGF is a generic analytical approach within the hierarchical Bayesian 

framework and as this thesis neared fruition, our lab has become increasingly 

convinced that the HGF model can accommodate key assumptions of first-

impression bias (as discussed on pp. 71, 92, & 107). We think this model could 

predict at least some of the data patterns we observe when participants hear the 

multi-timescale sequence. More specifically, it could predict that model updating 

upon exposure to an unexpected event (i.e. a deviant tone), is always constrained by 

the modelled likelihood that transition statistics (e.g. tone roles) will change (e.g. 

sound sequence stability; Mathys et al., 2011). The HGF model therefore reflects a 

potentially valuable tool for testing mechanistic hypotheses about the bias because it 

can be applied to our data to confirm the presence of bias effects in evoked-

potentials as well as elucidate how the bias is modified under different experimental 

conditions, including those induced in this thesis.  

There is a movement to study the effects of deviance from sound patterning 

using complex sound sequence configurations that are arguably a more ecologically 
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valid measure of sound processing across time. At present, we do not know whether 

other observations (Mullens et al., 2016; Todd et al., 2011, Todd et al., 2013, Todd et 

al., 2014a) or those generated in this thesis are specific to a relatively simple two-

tone context or alternatively, indicate a fundamental order-dependent phenomenon 

that extends to more complex sound environments. One future experiment could 

determine whether first impression bias occurs when a third tone in the role of a 

second equally probable standard (i.e., deviant p = 0.141, both standards p = 0.425) 

is introduced. This means the role of the deviant would alternate between three tones 

across block-contexts of sequences creating a first, second and third deviant and two 

initial standards. Here two of the three sounds would signify the regularity in any 

given block-context making two tones equally redundant in the first block. This 

study design additionally creates a difference in stability for the first two standards 

(i.e. when one switches to become the second deviant and the other continues as a 

standard for a second consecutive block). It is possible that this additional period of 

“redundancy” could affect responses in the stable sequence. If this additional 

redundancy has an effect we would expect this to show up in more prolonged 

suppression of the growth in MMN to this sound when it becomes a deviant in the 

stable sequence data. Such a design introduces random background noise to the 

sound environment during sound sequence processing, and could better establish the 

ecological validity of first impression bias. This could provide insight into whether 

the bias is a phenomenon that extends to experience with more complex transition 

statistics underlying auditory input over time rather than just a two-tone sequence 

which is far removed from the complexity of the real-world auditory environment.  
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5.6 Concluding Remarks 

 This thesis examined mechanistic hypotheses of first impression bias that 

were tested using a specific auditory evoked response, the MMN. This work has 

been conducted under assumptions of predictive coding (& empirical Bayes) as a 

general theory for understanding inferential learning in perception. Put simply, sound 

inputs, predictions and prediction error signals (discrepancy between sound input & 

predictions) interact across different levels of a hierarchically-organised cortical 

network. The research described in this thesis provides experimental evidence that 

first impression bias is a robust and long-lasting default processing mechanism that 

requires naivety to sound sequences as well as some level of resource availability to 

be observed.  

Importantly, these results support the overarching working hypothesis of this 

thesis - that first impression bias is a striking example of a hierarchical inference 

process at play. Moreover, the results show that MMN amplitude is clearly sensitive 

to manipulation of attention-based cognitive resource availability. It demonstrates 

the usefulness of utilising unique sequence designs to test specific questions about 

how underlying mechanisms adapt to demands induced by different experimental 

designs in addressing core problems in neuroscience such as perceptual inference 

and learning in the brain. Finally, results in this thesis have implications for how the 

human brain processes sound patterns. Evidence of learning bias in such a basic 

process introduces the potential to study aspects of learning without laborious pre-

training or the need for a motivated learner. It further offers the opportunity to 

examine the developmental trajectory of these learning biases as well as whether 

they are altered by different clinical disorders (e.g. schizophrenia) or age and even its 

evolution over species. 
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Appendix 2: Standard/Deviant Analyses for Chapter 2 

Replication Study 1. 

Standard and deviant ERPs. The ERP to each sound as a standard and as a deviant 

are plotted in supplementary Figure 5.1. Additional analyses were performed 

separately on the standard waveforms to elucidate the basis of the amplitude effects 

in the MMN difference waveform. In Figure 5.1, the differential responsiveness to 

each tone depends on their role (standard vs. deviant). In prior studies (Mullens et 

al., 2014; Todd et al., 2013) have seen repetition effects evident in the standard 

ERPs. Analysis over the P2 period (140 to 170ms) revealed significantly less 

negative ERPs to standards elicited over the second-half of sequence blocks (Half 

main effect, F (1, 34) = 16.89, p < .001 η2= .332), compared to the first-half of 

blocks. A significant main effect of Sequence was also revealed (F (1, 28) = 4.58, p 

< .05 .119) with standard ERPs being less negative over this period in the stable 

sequences when compared with unstable sequences.  A Sequence x Half interaction 

(F (1, 34) = 5.27, p < .05 η2= .134) was found to be significant and due to standard 

ERPs being less negative in the fast- compared to slow- sequences. This interaction 

was driven by less negative standards ERPs in the unstable (M = .94) compared to 

stable (M = 1.28) sequences in the second but not first (M = .74 and .78 for unstable 

and stable sequences, respectively) half of blocks (simple contrast, F (1, 34) = 5.27, 

p < .05).  

Analysis confirmed that significant effects revealed for deviant ERPs are 

equivalent to those generated for MMN waveforms reported in the manuscript. A 

significant main effect of Deviant (F (1, 34) = 4.88, p <.05 η2= .126) and Sequence 

(F (1, 34) = 13.32, p <.01 η2= .281) as well as a Half x Deviant x Sequence (F (1, 

34) = 5.25, p < .05 η2= .134) interaction was observed. Analysis revealed that this  
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Figure 5.1. Standard and deviant ERP waveforms for replication study A. Standard and B. deviant ERPs to 
presentation of the sound first encountered as a deviant (60 ms) and the sound encountered as the second deviant 
(30 ms) in stable and unstable sequences for data obtained from the first and second half of blocks. 

 

interaction was due to a Deviant x Sequence effect present in first half data only (F 

(1, 34) = 5.51, p <.05 η2= .139) that was driven by a significantly smaller MMN in 

the fast compared to slow sequences for the first (p < .01) but not second deviant (p 

= .81; see Figure 5.1). It is clear from Figure 5.1 that when tone-roles change, MMN 

to the sound first presented as a deviant is highly modulated by sequence stability. 

Comparatively, there is no difference in MMN amplitude between stable and 

unstable sequence for the second deviant indicating that this sound is modulated less, 

if at all, by the stability of tone roles within sequences. Therefore, comparison on 

standard and deviant ERP effects confirms that evidence of bias effects exposed in 

primary MMN analyses are being driven by the response to deviant tones. 

 

Repeated Sequence Exposure Study 2 

Standard and deviant ERPs. The ERP to each sound as a standard and as a deviant 

are plotted in supplementary Figures 5.2 and 5.3, respectively. Additional analyses 

were performed separately on the standard and deviant waveforms in order to  
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Figure 5.2. Standard ERP waveforms for repeated sequence design. The ERP responses for the first (30ms) and 
second (60ms) repetitive standard sounds in the 1st and 2nd half of A. Stable condition and B. Unstable sequences. 
The ERPs to standard sounds for data acquired in the first, second, third and fourth sequence occurrence are not 
differentially modulated by stability of tone roles.  
  

 
Figure 5.3. Deviant ERP waveforms for repeated sequence study.  The ERP responses for the first (60ms) and 
second (30ms) rare deviant sounds in the 1st and 2nd half of A. Stable condition and B. Unstable sequences. It is 
clear that the ERPs to deviant sounds for data acquired in the first sequence presentation are differentially 
affected by tone roles. Remarkably, evidence of primacy bias effects is not only sustained across second, third 
and fourth sequence occurrences but intensify with repetition.  
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confirm the basis of the amplitude effects underlying the MMN difference 

waveforms, across sequence repetitions. These figures emphasise that responsiveness 

to sounds are linked to role (standard vs. deviant) at sequence onset. In prior studies 

(Mullens et al., 2014; Todd et al., 2013) repetition effects evident in the standard 

ERPs over the P2 period from 140 to 170ms have been observed. Analysis of this 

period showed that standard ERPs were less negative over the second- compared to 

the first-half of recording blocks (F (1, 28) Half = 72.13, p < .001 η2= .720). An 

effect of Deviant was also observed (F (1, 28) = 8.17, p < .05 .226) with ERPs for 

the 60ms standard being less negative than those to the 30ms standard for both 

conditions. No effect of presentation was revealed for mean amplitudes of standard 

ERPs extracted over this period (p = 1.72). 

 Analysis of deviant ERPs revealed that effects were equivalent to those 

observed for MMN difference waveforms. This confirmed significant main effects of 

Half (F (1, 28) = 4.57, p <.05 η2= .140), Deviant (F (1, 28) = 22.88, p <.001 η2= 

.450) and Presentation (F (3, 84) = 13.43, p <.001 η2= .324) and a Deviant x Half (F 

(1, 28) = 5.54, p < .05 η2= .165) interaction. The interaction was due to a larger 

MMN to the first- relative to second-deviant regardless of condition or presentation 

type. From Figure 2 it is apparent that this interaction occurs due to MMN being 

smaller in the first-half than the second-half of sequence blocks for the second-

deviant but not the first, and that MMN amplitude differs most markedly between 

tones for the first-half data. The breakdown of interactions mirrored the results for 

the MMN analysis in the manuscript confirming that the bias effects act on the 

MMN generated to the deviant tones.  
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Appendix 3: Standard/Deviant Analyses for Chapter 3 

Standard and Deviant ERPs. A total of eight ERP values for each tone type were 

compared at the F4 electrode site in a mixed measures ANOVA with sequence 

(stable, unstable), deviant (first deviant, second deviant) and half (1st, 2nd) as within-

subject factors and condition (WM, PT, DVD) as a between-subject variable. ERPs 

to standard and deviant sounds were analysed separately. to determine whether main 

effects on MMN were evident in deviant responses, standard responses or both with 

significance values set at .05.  

The ERPs generated to the first (30ms) and second (60ms) standard tones 

across the first and second half of blocks for stable and unstable sequences for the 

DVD, WM and PT task condition are presented in Figure 5.4.A, B, and C, 

respectively. Analysis of the RP period (50-150ms) revealed a significant sequence 

by half by sequence interaction that was further modified by group (F (1, 43) = 3.91, 

p = .05, ƞ= .154). Data for each group were then analysed separately. This revealed a 

marginal sequence by half interaction for those who completed an undemanding 

DVD task (F (1, 13) = 4.62, p = .05, ƞ= .262). Here standard ERPs were significantly 

more positive in the second relative to first half of block-contexts for the stable 

sequence only (F (1, 13) = 8.00, p < .05, ƞ= .381) with no differences observed for 

unstable sequence (p = .40). A significant effect of sequence stability for those who 

completed the PT task was also found where ERPs to deviant in the stable sequence 

were larger relative to the unstable sequence (F (1, 14) = 8.33, p < .05, ƞ= .373). No 

effects were observed for the WM group.  

Analysis of the P2 period revealed a significant main effect of half (F (1, 43) 

= 41.47, p < .001, ƞ= .53) with the amplitude of the ERP over the 140-170ms P2 
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Figure 5.4. Group-averaged deviant and standard ERPs by group in the A. DVD group (undemanding 
condition), B. WM group, and C. PT group  
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period being less negative for the second relative to first half data. A significant  

effect of sequence was also observed with standard ERPs less negative in the stable 

relative to unstable sequence type (F (1, 43) = 8.92, p < .01, ƞ= .17). 

Figure 5.4A, B and C also presents each groups ERPs to deviant tones for the 

first and second halves of stable and unstable sequences for both the 60ms (first) and 

30ms (second) deviant. These figures emphasize differences in responsiveness to 

sounds as a function of their role for each group task. The analysis of deviant ERPs 

revealed main effects of sequence (stable > unstable, F (1, 43) = 33.94, p < .001 ƞ2 = 

.44), block-context half (second half > first half, F (1, 43) = 13.69, p < .01 ƞ2 = .24) 

and deviant (first > second, F (1, 43) = 9.28, p < .01 ƞ2 = .18).  These were further 

modified by a significant four-way interaction between group, sequence, half and 

tone (F (2, 43) = 3.56, p < .05, ƞ= .14) owed to more negative ERPs in stable 

sequences compared with unstable sequences.  

Analysis restricted to the DVD group showed a significant sequence by half 

by tone interaction (F (1, 13) = 17.43, p < .01, ƞ= .57). In data generated for the 

stable sequence only, deviant ERPs were modulated differently by half for the two 

tones (F (1, 13) = 19.70, p < .01, ƞ= .60). ERPs to the first deviant sound 

significantly decreased by the second-half of block-contexts (t13= 3.10, p<.05) 

whereas those to the second deviant showed a tendency to increase across block-

context halves with marginal effects observed (t13= 1.98, p = .07). An opposite 

pattern of effects was observed for the unstable sequence (F (1, 13) = 4.91, p < .05, 

ƞ= .27) with ERPs to the first deviant significantly increasing across halves (t13= 

2.85, p <.05) but not for the second (p = .37). 

A comparison between WM and DVD groups revealed a sequence x deviant 

x half interaction that was significantly modified by group (F (1, 29) = 10.72, p < 
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.01, ƞ2 = .27). A trend toward this same interaction type was found in a WM/PT 

comparison (F (1, 27) = 3.01, p = .09, ƞ2 = .10). This pattern of deviant ERP 

differentiation was not observed when the WM and PT groups were compared. A 

mixed model ANOVA revealed basic stability effects only irrespective of demanding 

task performed. That is, ERPs in the stable sequence were larger overall relative to 

the unstable sequence (F (1, 13) = 34.43, p < .001, ƞ= .53) and increased over block-

context halves (second half > first half, F (1, 29) = 18.50, p < .001, ƞ2 = .38). An 

effect of tone was also observed (first deviant > second deviant, F (1, 29) = 10.83, p 

< .01, ƞ2 = .26) but no significant interactions. 

Analysis limited to the WM group showed significant main effects of 

sequence, half and deviant (stable > unstable, F (1, 16) = 23.90, p < .001, ƞ2 = .60, 

second half > first half, F (1, 16) = 5.31, p < .05, ƞ2 = .25, & first deviant > second 

deviant, F (1, 16) = 11.31, p < .01, ƞ2 = .41, respectively). Significant effects of 

sequence (stable > unstable, F (1, 14) = 12.36, p < .01, ƞ2 = .47) and half (second 

half > first half, F (1, 14) = 13.74, p < .01, ƞ2 = .50) were also observed in data 

generated for those who completed a PT task. Notably, there were no significant 

interactions present in either the WM or PT group. 

 

 

 

 

 

 

 

 



APPENDICES 

214 
 

Appendix 4: Foreknowledge script/diagram for Chapter 4 

1. You will hear two types of sounds that will vary in length. One will be a 

short 30ms sound, and the other will be a longer 60ms sound. 

2. One of these sounds will occur frequently whereas the other will be rare. 

3. At times, these sounds will change roles so that the rare tone will become 

frequent, and the frequent tone will become rare (refer to diagram- this is 

represented by the diagonal-shaded box changing to the grey-shaded box, and 

then repeating until the sequence is finished). 

4. It is also important to know that the roles of these tones will change at 

different speeds. 

5. First, you will hear the slow changing sequence (as shown on the left-hand 

side of this diagram). In this sequence the roles will change every 2.4 

minutes.  

6. Next, you will hear the fast changing sequence (as shown on the right-hand 

side of this diagram). In this sequence the roles will change every 0.8 

minutes.  

The following diagram was shown to participants as verbal description was 

provided: 
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Appendix 5: Standard/Deviant Analyses for Chapter 4 

Standard and Deviant ERPS. Figure 5.5 is an illustration of the ERPs generated to 

standard and deviant tones across the first and second halves of stable and unstable 

sequences. Analysis of the P2 period (140-170 ms) revealed a significant main effect 

of half (F (1, 14) = 30.56, p < .001, ƞ = .686) due to less negative ERPs in the second 

relative to first half of sound blocks. Standard ERPs were significantly less negative 

in the stable sound sequences relative to unstable sequences (F (1, 14) sequence = 

10.21, p < .01, ƞ = .422). Similarly, analysis of the RP period (50-150ms) yielded a 

significant main effect of sequence type (F (1, 14) = 19.22, p = .001, ƞ = .579) which 

was due to less negative ERPs in the stable compared with unstable sound 

sequences. 

Analysis of ERPs to deviant sounds revealed that MMN to the first (60ms) 

deviant sound was significantly more negative than that to the second deviant (F (1, 

14) = 8.31, p < .05, ƞ = .372). A significant half x sequence interaction (F (1, 14) = 

6.05, p < .05, ƞ = .302) was also observed. Appropriate follow-up contrasts were 

performed revealing that ERPs to deviant tones were significantly smaller by the 

second half of block-contexts, relative to the first half, for stable sequences only.  
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Figure 5.5. Group averaged ERPs to each tone as a function of role (standard versus deviant) within sound blocks 
that match those presented at sequence onset (initial sound blocks; upper half of figure) and those that do not 
match blocks presented at sequence onset  (later sound blocks; lower half of figure). In initial sound blocks, the 
30ms and 60ms tones signified A. First Standard and B. First Deviant roles, respectively. In alternate blocks, the 
role of each tone switched so that the first deviant signified the C. Second Standard (60ms) and the first standard 
signified the D. Second Deviant (30ms).   NOTE: Figure legend denotes 1st and 2nd half of sound blocks within 
stable and unstable sequence types. 
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Appendix 6: Funding Sources for Chapters 2 to 4 
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Appendix 7: Information Statement and Consent Form for Chapters 2 – 4 

 

 
 

Associate Professor Juanita Todd 
School of Psychology 

University of Newcastle,  
Callaghan NSW 2308 

AUSTRALIA 
Phone: (02) 4921 5977 

Email: Juanita.Todd@newcastle.edu.au 
 

Information Statement for the Research Project: 
Does that matter? How the brain decides what period of time is relevant. 

 
You are invited to participate in the research project identified above which is being conducted by 
Associate Professor Juanita Todd from the School of Psychology at the University of Newcastle. The 
team of staff and students involved in this research is listed below. All are students are completing their 
undergraduate degree at the University of Newcastle under the supervision of Dr Juanita Todd. Your 
appointment will be conducted by one of these team members. Data generated from your appointment 
will be used by one or more of the students in the completion of the research component of their degree. 
 
Why is the research being done? 
Important theories about how the brain works suggest that it maintains “optimal function” by learning to 
ignore irrelevant events so that attention can be focused on important events that provide us with new 
learning. We are studying how this process operates in the auditory system, that is, in the parts of the 
brain that process sound.  
 
The brain automatically uses information about the likelihood of sounds in the environment to decide what 
is important. When the brain encounters repetitive sounds it reduces the size of the response to these 
sounds because it learns to predict them and learns that they do not carry important information. When 
the brain then encounters a different sound it responds more strongly to these rare events and this is called 
a mismatch negativity or MMN response. This process happens outside your awareness, even during 
sleep. In this study we are going to ask you to watch a DVD movie or complete a simple visual perceptual 
or cognitive task and ignore the sounds that we present to you over headphones. Our sound sequences 
have been designed to determine the time frame over which your brain is extracting probability information 
in order to determine whether a sound is important or not. From this information we will also begin to 
understand which areas of the brain are involved in this process.  
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Who can participate in the research? 
We require participants to complete this study who meet the following criteria: 

(1) Aged 18-35 years. 
(2) No treatment for mental illness or diagnosis of psychosis in a first degree relative. 
(3) No known hearing loss. 
(4) No history of injury to the brain or neurological condition (e.g., stroke, epilepsy). 
(5) No excessive alcohol or drug use. 

 
What choice do you have? 
Participation in this research is entirely your choice.  Only those people who give their informed consent 
will be included in the project.  Whether or not you decide to participate, your decision will not 
disadvantage you in any way.  
 
If you do decide to participate, you may withdraw from the project at any time without giving a reason 
and you have the option of withdrawing any information which identifies you. If you do choose to 
withdraw you have the option of withdrawing your data from the project also. 
 
What would you be asked to do and how long will it take? 
If you agree to participate, you will be asked to attend an appointment at the University of Newcastle. 
This appointment will last about 2.0 hours and will involve: 
 
• A hearing test to ensure no significant hearing loss is present (5 minutes). 
• A set-up with cap for the recording of electrical brain potentials produced in response to sounds. An 

elastic cap that contains small sensors will be placed on your head and a small amount of 
conductive gel will be inserted into the sensors so that we can record the electrical activity in the 
brain that occurs in response to the sound sequences. During the recording you will be asked to 
ignore the sounds whilst you view a self-selected DVD movie or complete a simple visual perceptual, 
or 2-back working memory task (40 minutes set-up and 60 minutes recording time).  

 
You will be offered a reimbursement of $30 in Coles Corporate vouchers for your time and 
inconvenience. If you are a student enrolled in PSYC1010, PSYC1020, PSYC2500 or PSYC3000 you 
can instead choose to receive 4 course credit points for your participation. 
 
What are the risks and benefits of participating? 
We cannot promise you any direct benefit from participating in this research.  However, as noted above, 
increasing our knowledge of auditory system and higher-order brain area function enables us to develop 
better tests to understand individual differences and how problems in brain function arise. It is possible 
that during the hearing test we could identify some hearing loss that you are not currently aware of. If this 
occurs, we will discuss the result with you and suggest that you contact your general practitioner for 
advice.  
 
How will your privacy be protected? 
Any information that is obtained in connection with this study and that can be identified with you will 
remain confidential and will be disclosed only with your permission. There are two exceptions. If you 
reveal present intentions to harm yourself or others, or if you reveal specific detail about any criminal 
activity as we are obliged to report this to relevant persons (e.g. case worker, GP or police). All files with 
identifying information will be kept securely stored in a locked area of the University of Newcastle for a 
period of five  
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years after which all copies will be shredded. Any identifiable data kept electronically will be password 
protected. All experimental data will be kept for a period of five years after which they will be incinerated 
or shredded as appropriate. 
 
 
How will the information collected be used? 
The researchers intend to publish the results of this research in a scientific journal. However, in any 
publication, information will be provided in such a way that you cannot be identified. Whilst you will have 
the opportunity to discuss and view some of the measures taken during your appointment, the information 
collected is generally only meaningful in terms of group comparisons. In the consent form you are invited 
to request a description of the project outcome in lay terms which will be mailed to you once the study is 
complete. We will also ask your consent to use the data obtained here for a comparison to measures 
obtained in future studies conducted by the researchers. This is completely optional and you can 
participate in this study without providing this permission. 
 
What do you need to do to participate? 
Please read this Information Statement and be sure you understand its contents before you consent to 
participate.  If there is anything you do not understand, or you have questions, contact the researcher.   
 
If you would like to participate, please contact one of the researchers (using the details below) to (using 
the details below) to arrange an appointment time that suits you. When you attend you will be required to 
sign a consent form acknowledging that you have received the information provided above, that all of 
your questions regarding participation have been answered to your satisfaction. 
 
Further information 
If you would like further information please contact Jade Frost 
Thank you for considering this invitation.  
 
 
Juanita Todd 
 
Personnel Position Email Phone 
A/Prof Juanita Todd Associate Professor Juanita.Todd@newcastle.edu.au  
Dr Alexander Provost  Lecturer Alex.provost@newcastle.edu.au 49217161 
Dr Bryan Paton Lecturer Bryan.Payton@newcastle.edu.au  
Jade Frost PhD Student Jade.Frost@newcastle.edu.au  

 

 
 
 
 
 
 
 
Complaints about this research 
This project has been approved by the University’s Human Research Ethics Committee, 
Approval No. H-2010-1350 
 
Should you have concerns about your rights as a participant in this research, or you have a complaint about 
the manner in which the research is conducted, it may be given to the researcher, or, if an independent 
person is preferred, to the Human Research Ethics Officer, Research Office, The Chancellery, The 
University of Newcastle, University Drive, Callaghan NSW 2308, Australia, telephone (02) 49216333, email 
Human-Ethics@newcastle.edu.au
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Dr Juanita Todd 
School of Psychology 

University of Newcastle,  
Callaghan NSW 2308 

AUSTRALIA 
Phone: (02) 4921 5977 

Email: Juanita.Todd@newcastle.edu.au 
 

Consent Form for the Research Project: 
Does that matter? How the brain decides what is period of time is relevant. 

 
Dr Juanita Todd 

I agree to participate in the above research project and give my consent freely.   
 
I understand that the project will be conducted as described in the Information Statement, a copy of which I have 
retained. 
 
I understand I can withdraw from the project at any time and do not have to give any reason for withdrawing. 
 
I consent to  
• A hearing screen.  
• A recording of electrical brain potentials produced in response to sounds presented over headphones while I 

watch a DVD or perform a simple visual perceptual or cognitive task. 
 
 
I understand that my personal information will remain confidential to the researchers. 
 
I have had the opportunity to have questions answered to my satisfaction. 
 

� I would like you to send me a lay person description of the study results when available.  
 If so, please provide email or postal address below. 

� I would like to be contacted regarding participation in future research in this area.   
 If so, please provide email or postal address below 
_____________________________________________ 
_____________________________________________ 
_____________________________________________ 
_____________________________________________ 
_____________________________________________ 
_____________________________________________ 

� I consent to allow the researchers to use the data collected here for comparison to similar measures used in 
future studies.  
 
 
Print Name:_________________________Signature:____________________Date:_____________________ 
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Appendix 8: Copy of Email from Copyright Holder Indicating Permission to 
Copy and Communicate Work Presented in Figure 1.1. 
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